[1] 姜久雷,潘姿屹,李盛庆.融合信任度的神经网络推荐算法[J].计算机应用与软件, 2023, 40(8): 274-282, 311. DOI: 10.3969/j.issn.1000-386x.2023.08.043. [2] 冯兴杰,生晓宇.基于图神经网络与深度学习的商品推荐算法[J].计算机应用研究, 2021, 38(12): 3617-3622. DOI: 10.19734/j.issn.1001-3695.2021.05.0183 [3] 于健,赵满坤,高洁,等.基于高阶和时序特征的图神经网络社会化推荐算法研究[J].计算机科学, 2023, 50(3): 49-64. DOI: 10.11896/jsjkx.220700108. [4] HAN J W, PEI J, YIN Y W. Mining frequent patterns without candidate generation[C] //Proceedings of the 2000 ACM SIGMOD international conference on Management of data. Dallas Texas USA. ACM, 2000: 1-12. DOI: 10.1145/342009.335372. [5] MA Y H, JIA J, ZHOU S P, et al. Towards better understanding the clothing fashion styles: a multimodal deep learning approach[J]. Proc AAAI Conf Artif Intell, 2017, 31(1): 38-44. DOI: 10.1609/aaai.v31i1.10509. [6] MA W Z, ZHANG M, CAO Y, et al. Jointly learning explainable rules for recommendation with knowledge graph[C] //The World Wide Web Conference. San Francisco CA USA. ACM, 2019: 1210-1221. DOI: 10.1145/3308558.3313607. [7] MISHRA R, KUMAR P, BHASKER B. A web recommendation system considering sequential information[J]. Decis Support Syst, 2015, 75: 1-10. DOI: 10.1016/j.dss.2015.04.004. [8] SALEHI M, NAKHAI KAMALABADI I, GHAZNAVI GHOUSHCHI M B. Personalized recommendation of learning material using sequential pattern mining and attribute based collaborative filtering[J]. Educ Inf Technol, 2014, 19(4): 713-735. DOI: 10.1007/s10639-012-9245-5 [9] ZHOU G R, MOU N, FAN Y, et al. Deep interest evolution network for click-through rate prediction[J]. Proc AAAI Conf Artif Intell, 2019, 33(1): 5941-5948. DOI: 10.1609/aaai.v33i01.33015941. [10] 李杰,杨芳,徐晨曦.考虑时间动态性和序列模式的个性化推荐算法[J].数据分析与知识发现, 2018, 2(7): 72-80. DOI: 10.11925/infotech.2096-3467.2017.0857. [11] 余皑欣,冯秀芳,孙静宇.结合物品相似性的社交信任推荐算法[J].计算机科学, 2022, 49(5): 144-151. DOI: 10.11896/jsjkx.210300217 [12] BORDES ANTOINE, USUNIER NICOLAS, GARCIA-DURAN ALBERTO, et al. Translating Embeddings for Modeling Multi-relational Data[C] //Advances in neural information processing systems. 2013: 2787-2795. [13] AGRAWAL R, IMIELIN'SKI T, SWAMI A. Mining association rules between sets of items in large databases[C] //Proceedings of the 1993 ACM SIGMOD international conference on Management of data. Washington D.C. USA. ACM, 1993: 207-216.DOI: 10.1145/170035.170072. [14] WANG C Y, ZHANG M, MA W Z, et al. Make it a chorus: knowledge- and time-aware item modeling for sequential recommendation[C] //Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. Virtual Event China. ACM, 2020: 109-118. DOI: 10.1145/3397271.3401131. [15] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[J]. Proc 25th Conf Uncertain Artif Intell UAI 2009, 2009: 452-461. [16] WANG C Y, ZHANG M, MA W Z, et al. Modeling item-specific temporal dynamics of repeat consumption for recommender systems[C] //The World Wide Web Conference. San Francisco CA USA. ACM, 2019: 1977–1987. DOI: 10.1145/3308558.3313594. [17] HE X N, LIAO L Z, ZHANG H W, et al. Neural collaborative filtering[C] //Proceedings of the 26th International Conference on World Wide Web. Perth Australia. Republic and Canton of Geneva, Switzerland: International World Wide Web Conferences Steering Committee, 2017: 173–182. DOI: 10.1145/3038912.3052569. [18] HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[EB/OL]. 2015: arXiv: 1511.06939. http://arxiv.org/abs/1511.06939 [19] LOYOLA P, LIU C, HIRATE Y. Modeling user session and intent with an attention-based encoder-decoder architecture[C] //Proceedings of the Eleventh ACM Conference on Recommender Systems. Como Italy. ACM, 2017: 147–151. DOI: 10.1145/3109859.3109917. [20] ZHANG Y F, AI Q Y, CHEN X, et al. Learning over knowledge-base embeddings for recommendation[J]. arXiv E Prints, 2018: arXiv: 1803.06540. DOI: 10.48550/arXiv.1803.06540 [21] FAN W Q, LI Q, CHENG M. Deep modeling of social relations for recommendation[J]. Proc AAAI Conf Artif Intell, 2018, 32(1): 1-5. DOI: 10.1609/aaai.v32i1.12132. ( |