[1] BHASKAR T G,LAKSHMIKANTHAM V.Set differential equations and flow invarianee[J].Appl Anal,2003,82:357-368.DOI:10.1080/0003681031000101529. [2] BHASKAR T G,LAKSHMIKANTHAM V.Lyapunov stability for set differential equations[J].Dynam Systems Appl,2004,13:1-10. [3] LAKSHMIKANTHAM V,LEE S,VATSALA A S.Set-valued hybrid dilfferential equations and stability in terms of two measures[J].J Hybrid Syst,2002,2:169-187. [4] LAKSHMIKANTHAM V,LEE S,VATSALA A S.Interconneetion between set and fuzzy differential equations[J].Noulinear Anal,2003,54:351-360.DOI:10.1016/S0362-546X(03)00067-1. [5] 王培光,高纬.集值微分方程初值问题拟线性化方法[J].河北大学学报(自然科学版),2011,31(1):1-6. WANG Peiguang,GAO Wei.Quasilinearization of initial value problem for set differential equations[J].Journal of Hebei University(Natural Science Edition),2011,31(1):1-6. [6] WANG P G,GAO W.Quasilinearization of an initial value problem for a set valued integrodifferential equation[J].Computers and Mathematics with Applications,2011,61:2111-2115.DOI:10.1016/j.camwa.2010.08.084. [7] WANG P G,HOU Y.Generalized quasilinearization for the system of fractional differential equations[J].J Funct Spaces Appl,2013:793263. [8] LAKSHMIKANTHAM V,VATSALA A S.Generalized quasilinearization for nonlinear problems[M].Dordrecht:Kluwer Academic Publishers,1998. [9] MELTON G T,VATSALA A S.Generalized quasilinearization and higher order of convergence for first order initial value problems[J].Dynamic Synamic Systems and Applications,2006,15:375-394. [10] 王培光,侯颖,刘静.一类分数阶微分方程的广义拟线性化方法[J].河北大学学报(自然科学版),2011,31(5):449-452. WANG Peiguang,HOU Ying,LIU Jing.Generalized quasilinearization for fractional differential equations[J].Journal of Hebei University(Natural Science Edition),2011,31(5):449-452. [11] KALABA R E,MOHAPATRA R N,VAJRAVELU K,et al.Extension of the method of quasilinearization and rapid convergence[J].Journal of Optimization Theory and Applications,1998,96:667-682. |