[1] SHAO Dali, YU Mingpeng, LIAN Jie. Heterojunction photodiode fabricated from hydrogen treated ZnO nanowires grown on p-silicon substrate [J]. Applied Physics Letters 2012, 101. [2] JHA S K, LUAN Chunyan, TO C H. ZnO-nanorod-array/p-GaN high-performance ultra-violet light emitting devices prepared by simple solution synthesis [J]. Applied Physics Letters 2012, 101. [3] Sung-Wook Chung, Jae-Young Yu, James R. Heath. Silicon nanowire devices [J]. Applied physics letters 2000, 15(15). [4] HUANG Yu, DUAN Xiangfeng, CUI Yi. Logic gates and computation from assembled nonowire building block [J]. Science 2001, 294. [5] KAYES M B, ATWATER A H, LEWIS N S. Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells [J]. Journal of Applied Physics 2005, 97. [6] MAIOLO J R, KAYES B M, FILLER M A. High aspect ratio silicon nanowier array photoelectrochemical cells [J]. Journal of the American Chemical Society 2007, 129. [7] Zhiqiang Xiong, Fangyuan Zhao, Jiong Yang, Xinhua Hu. Comparison of optical absorption in Si nanowire and nanoporous Si structures for photovoltaic applications [J]. Applied physics letters 2010, 18(18). [8] Kuiqing Peng, Xin Wang, Shuit-Tong Lee. Silicon nanowire array photoelectrochemical solar cells [J]. Applied physics letters 2008, 16(16). [9] Srivastava, S.K., Kumar, D., Singh, P.K., Kar, M., Kumar, V., Husain, M.. Excellent antireflection properties of vertical silicon nanowire arrays [J]. Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion 2010, 9(9). [10] GUO Haomin, WEN Long, LI Xinhua. Analysis of optical absorption in GaAs nanowire arrays [J]. Nanoscale Research Lett 2011, 6. [11] Tian Hong Guo, Yan Liu, Yong Cai Zhang, Ming Zhang. Green hydrothermal synthesis and optical absorption properties of ZnO2 nanocrystals and ZnO nanorods [J]. Materials Letters 2011, 4(4). [12] Cansizoglu, M.F., Engelken, R., Seo, H.-W., Karabacak, T.. High optical absorption of indium sulfide nanorod arrays formed by glancing angle deposition [J]. ACS nano 2010, 2(2). [13] H.Kataura, Y.Kumazawa. Optical Properties of Single-Wall Carbon Nanotubes [J]. Synthetic Metals 1999, 1/3(1/3). [14] Yang ZP, Ci LJ, Bur JA, Lin SY, Ajayan PM. Experimental observation of an extremely dark material made by a low-density nanotube array [J]. Nano letters 2008, 2(2). [15] SHI Haofei, JONG G O, HYOUNG W B. Low density carbon nanotube forest as an index-matched and near perfect absorption coating [J]. Applied Physics Letters 2011, 99. [16] O'Donnell, B., Yu, L., Foldyna, M., Roca I Cabarrocas, P.. Silicon nanowire solar cells grown by PECVD [J]. Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites 2012, 17(17). [17] YU Linwei, BENEDICT O D, MARTIN F. Radial junction amorphous silicon solar cells on PECVD-grown silicon nanowiers [J]. Nanotechnology 2012, 23. [18] Syu, H.-J., Shiu, S.-C., Lin, C.-F.. Silicon nanowire/organic hybrid solar cell with efficiency of 8.40 [J]. Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion 2012. [19] Zhang, F., Song, T., Sun, B.. Conjugated polymersilicon nanowire array hybrid Schottky diode for solar cell application [J]. Nanotechnology 2012, 19(19). [20] XIE Chao, LV Peng, NIE Biao. Monolayer graphene film/silicon nanowire array Schottky junction solar cells [J]. Applied Physics Letters 2011, 99. [21] Xin Wang, Kui-Qing Peng, Xiao-Jun Pan. High-Performance Silicon Nanowire Array Photoelectrochemical Solar Cells through Surface Passivation and Modification [J]. Angewandte Chemie 2011, 42(42). [22] Lu, Y., Lal, A.. High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography [J]. Nano letters 2010, 11(11). [23] Kumar, D., Srivastava, S.K., Singh, P.K., Husain, M., Kumar, V.. Fabrication of silicon nanowire arrays based solar cell with improved performance [J]. Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion 2011, 1(1). [24] WEN Long, ZHAO Zhifei, LI Xinhua. Theoretical analysis and modeling of light trapping in high efficicency GaAs nanowire array solar cells [J]. Applied Physics Letters 2011, 99. [25] LAPIERRE R R. Numerical model of current-voltage characteristics and efficiency of GaAs nanowire solar cells [J]. Journal of Applied Physics 2011, 109. [26] Czaban JA, Thompson DA, LaPierre RR. GaAs Core-Shell Nanowires for Photovoltaic Applications [J]. Nano letters 2009, 1(1). [27] Mariani, G., Wong, P.-S., Katzenmeyer, A.M., Léonard, F., Shapiro, J., Huffaker, D.L.. Patterned radial GaAs nanopillar solar cells [J]. Nano letters 2011, 6(6). [28] LI HaoFeng, JIA Rui, DING WuChang, CHEN Chen, MENG YanLong, LIU XinYu. The analysis of electrical performances of nanowires silicon solar cells [J]. 2011.doi:10.1007/sl1431-011-4592-9 [29] Chao, J.-J., Shiu, S.-C., Hung, S.-C., Lin, C.-F.. GaAs nanowire/poly(3, 4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells [J]. Nanotechnology 2010, 28(28). [30] LI Zhongrui, KUNETS V P, SANNI V. SOCl2 enhanced photovoltaic conversion of single wall carbon nanotube/n-silicon heterojunctions [J]. Applied Physics Letters 2008, 93. [31] WANG Hongguang, BAI Xi. Preparation of CuI particles and their applications in carbon nanotube-Si heterojunction solar cells [J]. Materials Letters 2012, 79. [32] LI Yongfeng, KODAMA S, TOSHIRO K. Performance enhancement of solar cells based on single-walled carbon nanotubes by Au nanoparticles [J]. Applied Physics Letters 2012, 101. [33] WEI Jinquan, JIA Yi, SHU Qinke. Double-walled carbon nanotubes solar cells [J]. Nano Letters 2007, 7. [34] Yi Jia, Jinquan Wei, Kunlin Wang, Anyuan Cao, Qinke Shu, Xuchun Gui, Yanqiu Zhu, Darning Zhuang, Gong Zhang, Beibei Ma, Liduo Wang, Wenjin Liu, Zhicheng Wang, Jianbin Luo, Dehai Wu. Nanotube-silicon Heterojunction Solar Cells [J]. Advanced Materials 2008, 23(23). [35] JIA Yi, LI Peixu, GUI Xuchun. Encapsulated carbon nanotube-oxide-silicon solar cells with stable 10 [J]. Applied Physics Letters 2011, 98. [36] Dong-Wook Shin, Jong Hak Lee, Yu-HeeKim, SeongMan Yu, Seong-Yong Park, Ji-Beom Yoo. A role of HNO3 on transparent conducting film with single-walled carbon nanotubes [J]. Nanotechnology 2009, 47(47). [37] DONG Yajie, TIAN Bozhi, THOMAS J K. Coaxial Group Ⅲ-Nitride nanowire photovoltaics [J]. Nano Letters 2009, 9. [38] Hajime Goto, Katsutoshi Nosaki, Katsuhiro Tomioka, Shinjiro Hara, Kenji Hiruma, Junichi Motohisa, Takashi Fukui. Growth of Core-Shell InP Nanowires for Photovoltaic Application by Selective-Area Metal Organic Vapor Phase Epitaxy [J]. Applied physics express 2009, 3(3). [39] LIU C P, CHEN Z H, WANG H E. Enhanced performance by incorporation of zinc oxide nanowire array for organic-inorganic hybrid solar cells [J]. Applied Physics Letters 2012, 100. [40] Kazuko Takanezawa, Keisuke Tajima, Kazuhito Hashimoto. Efficiency enhancement of polymer photovoltaic devices hybridized with ZnO nanorod arrays by the introduction of a vanadium oxide buffer layer [J]. Applied physics letters 2008, 6(6). |