河北大学学报(自然科学版) ›› 2019, Vol. 39 ›› Issue (2): 211-216.DOI: 10.3969/j.issn.1000-1565.2019.02.015

• • 上一篇    下一篇

基于深度学习的复杂背景下茶叶嫩芽检测算法

孙肖肖1,牟少敏1,许永玉2,曹旨昊1,苏婷婷1   

  • 收稿日期:2018-09-07 出版日期:2019-03-25 发布日期:2019-03-25
  • 通讯作者: 牟少敏(1964—),男,山东泰安人,山东农业大学教授,博士,主要从事机器学习、计算机视觉、农业大数据和人工智能的研究.E-mail:msm@sdau.edu.cn
  • 作者简介:孙肖肖(1993—),女,山东枣庄人,山东农业大学在读硕士研究生,主要从事机器学习方面研究. E-mail:18264893917@163.com
  • 基金资助:
    山东省自然科学基金资助项目(ZR201709180173);山东省茶叶产业技术体系项目(SDAIT-19-04)

Detection algorithm of tea tender buds under complex background based on deep learning

SUN Xiaoxiao1, MU Shaomin1, XU Yongyu2, CAO Zhihao1, SU Tingting1   

  1. 1. College of Information Science and Engineering, Shandong Agricultural University, Taian271018, China; 2. College of Plant Protection, Shandong Agricultural University, Taian 271018, China
  • Received:2018-09-07 Online:2019-03-25 Published:2019-03-25

摘要: 针对传统的基于机器视觉的茶叶嫩芽检测方法存在手工特征提取鲁棒性较差以及准确率较低等问题,首次将基于深度学习的目标检测算法YOLO应用到复杂背景下的茶叶嫩芽图像的检测,并从多尺度检测方面对YOLO网络架构进行了改进,用大尺度和中尺度检测代替了原来的多尺度检测.在预处理阶段,通过结合超绿特征以及OSTU算法对复杂背景下的茶叶嫩芽图像进行了图像分割,使得茶叶嫩芽区域更加明显.实验结果表明,通过与其他算法对比,基于深度学习的目标检测算法对复杂背景下的茶叶嫩芽具有较高的检测精度,为复杂背景下茶叶嫩芽的智能化采摘设备的研究提供了基础.

关键词: 深度学习, YOLO, 茶叶嫩芽, OSTU, 目标检测

Abstract: The traditional tea bud detection method based on machine vision has the problems of poor robustness and low accuracy in manual feature extraction. The target detection algorithm YOLO based on deep learning is applied to the detection of tea tender image under complex background for the first time, and the architecture of YOLO network is improved from the aspect of multi-scale detection, using large-scale and mesoscale detection instead of the original multi-scale detection. In the preprocessing stage, the image of tea shoots under complex background is segmented by combining the super green feature and the OSTU algorithm, which makes the tea tender bud area more obvious. The experimental results show that, by comparing with other algorithms, the target detection algorithm based on deep learning has a high detection precision for the tea tender shoots under complex background, which provides a basis for the research of intelligent picking equipment for tea tender shoots under complex background.

Key words: deep learning, YOLO, tea buds, OSTU, object detection

中图分类号: