河北大学学报(自然科学版) ›› 2023, Vol. 43 ›› Issue (5): 546-552.DOI: 10.3969/j.issn.1000-1565.2023.05.014

• • 上一篇    下一篇

目标检测在肺癌病理诊断中的应用

武建国1,杨晓茹2,王盼3,吴俊芳4,李瑞凯1,5   

  • 收稿日期:2022-06-23 出版日期:2023-09-25 发布日期:2023-10-25
  • 通讯作者: 李瑞凯(1991—)
  • 作者简介:武建国(1985—),男,河北保定人,河北大学附属医院高级工程师,主要从事人工智能在医学影像诊断中的研究.
    E-mail:wujianguo1111@126.com
  • 基金资助:
    河北大学附属医院基金资助项目(2019Q003)

Application of object detection algorithm in pathology diagnosis of lung cancer

WU Jianguo1,YANG Xiaoru2,WANG Pan3,WU Junfang4,LI Ruikai1,5   

  1. 1. Information Center, Affiliated Hospital of Hebei University, Baoding 071000, China; 2. Baoding Productivity Promotion Center, Baoding 071000, China; 3. Department of Pathology, Affiliated Hospital of Hebei University, Baoding 071000, China; 4. Baoding Sports School, Baoding 071000, China; 5. College of Quality and Technical Supervision, Hebei University, Baoding 071002, China
  • Received:2022-06-23 Online:2023-09-25 Published:2023-10-25

摘要: 基于深度学习的目标检测已经在交通、军事等多个领域得到了广泛研究,并取得了显著成果.为进一步研究其在医学图像诊断中的可用性,提出将目标检测算法的2类经典模型SSD和Faster RCNN应用于肺癌病理图像的病灶检测.实验对比发现,Faster RCNN平均处理1张图像所消耗的时间大概是SSD时长的4.6倍,但其识别准确度、精度均比SSD更高,模型性能更优.研究结果表明,目标检测算法能够实现肺癌病理图像的智能诊断,提高肺癌诊断率.

关键词: 深度学习, 目标检测, 肺癌, 病理图像, 智能诊断

Abstract: Object detection based on deep learning has been widely studied in many fields such as transportation and military, and has achieved remarkable results. In order to further study its usability in medical image diagnosis, two classical models of object detection algorithms, SSD and Faster RCNN, are proposed to appliy to the lesion detection of lung cancer pathological images. The experimental comparison shows that the average processing time of Faster RCNN is about 4.6 times longer than that of SSD, but the recognition accuracy and precision are higher than that of SSD, and the model performance of Faster RCNN is much better. The research results show that the object detection algorithm can realize the intelligent diagnosis of lung cancer pathological images and improve the diagnosis rate of lung cancer.

Key words: deep learning, object detection, lung cancer, pathological image, intelligent diagnosis

中图分类号: