[1] VERONIKA C, MARLEEN B, JOSIEN P W, et al. Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning in medical image analysis[J]. Medical Image Analysis, 2019, 54: 280-296. DOI: 10.1016/j.media.2019.03.009. [2] TAGHANAKI S A, KAWAHARA J,MILES B. Pareto-optimal multi-objective dimensionality reduction deep auto-encoder for mammography classification[J]. Computer Methods and Programs in Biomedicine, 2017, 145: 85-93. DOI: 10.1016/j.cmpb.2017.04.012. [3] SWEETLIN J D,NEHEMIAH H K,KANNAN A. A Feature selection using ant colony optimization with tandem-run recruitment to diagnose bronchitis from CT scan images[J]. Computer Methods And Programs in Biomedicine, 2017, 145: 115-125. DOI: 10.1016/j.cmpb.2017.04.009. [4] BHASKAR N, SUCHETHA M. PSO optimized 1-D CNN-SVM architecture for real-time detection and classification applications[J]. Computers In Biology and Medicine, 2018, 108: 85-92. DOI: 10.1016/j.compbiomed.2019.03.017. [5] GIOVANNI L F, THALES L A V, ARISTOFANES C S, et al. Convolutional neural network-based PSO for lung nodule false positive reduction on CT images[J]. Computer Methods and Programs in Biomedicine, 2018, 162: 109-118. DOI: 10.1016/j.cmpb.2018.05.006. [6] ZHANG Y D, ZHAO G H, SUN J D. Smart pathological brain detection by synthetic minority oversampling technique, extreme learning machine, and Jaya algorithm[J]. Multimedia Tools and Applications, 2018, 77(17): 22629-22648. DOI: 10.1007/s11042-017-5023-0. [7] LEANDOR V P, CALINAE B B C, RAVAGANI M A S S. Heat exchanger network synthesis without stream splits using parallelized and simplified simulated annealing and particle swarm optimization[J]. Chemical Engineering Science, 2017, 158: 96-107. DOI: 10.1016/j.ces.2016.09.030. [8] SAIED A, NIMA J N. Resource discovery in the peer to peer networks using an inverted ant colony optimization algorithm[J]. Peer-To-Peer Networking and Applications, 2019, 12(1): 129-142. DOI: 10.1007/s12083-018-0644-2. [9] KARTHICK P A, GHOSH D M, RAMAKRISHNAN S S. Surface electromyography based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms[J]. Computer Methods and Programs in Biomedicine, 2018, 154: 45-46. DOI: 10.1016/j.cmpb.2017.10.024. [10] WANG D S, TAN D P, LIU L. Particle swarm optimization algorithm: an overview[J]. Soft Computing, 2018, 22(2): 387-408. DOI: 10.1007/s00500-016-2474-6. [11] MOHAMMAD R B, ZBIGNEW M. Particle swarm optimization for single objective continuous space problems: A review[J]. Evolutionary Computation, 2017, 25(1): 1-54. DOI: 10.1162/EVCO_r_00180. [12] CLERC M, KENNEDY J. The particle swarm-explosion,stability and convergence in a multidimensional complex space[J]. IEEE Trans Evol Comput, 2002, 6(2): 58-73. DOI: 10.1109/4235.985692. [13] EBERHART R C, SHI Y. Comparing inertia weights and constriction factors in particle swarm optimization[C] // Congress on Evolutionary Computation,IEEE,2000. DOI: 10.1109/CEC.2000.870279. [14] SUGANTHAN P N. Particle swarm optimiser with neighbourhood operator[C] // Congress on Evolutionary Computation, IEEE, 1999.DOI:10.1109/CEC.1999.785514. [15] RATNAWEERA A, HALGAUMGE S K, WATSON H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3):240-255.DIO:10.1109/TEVC.2004.826071. [16] 胡旺, 李志蜀. 一种更简化而高效的粒子群优化算法[J]. 软件学报,2007, 18(4): 861-868. DOI: 10. 1360/jos1 80861. [17] SH Y A Modified particle swarm optimizer[C] // Proc of IEEE Icec Conference,1998.DIO:10.1109/ICEC.1998.699146. [18] TIAN D P, SHI Z Z. MPSO: Modified particle swarm optimization and its applications[J]. Swarm and Evolutionary Computation, 2018, 41: 49-68. DOI: 10.1016/j.swevo.2018.01.011. [19] LIN W C, YIN Y Q, CHENG S K. Particle swarm optimization and opposite-based particle swarm optimization for two-agent multi-facility customer order scheduling with ready times[J]. Applied Soft Computing, 2017, 52: 877-884. DOI:10.1016/j.asoc.2016.09.038. [20] HAN H G, LU W, HOU Y. An adaptive-PSO-based self-organizing RBF neural network[J]. IEEE Transactions On Neural Networks and Learning Systems, 2018, 29(1): 104-117. DOI:10.1109/TNNLS.2016.2616413. [21] LIANG H B, ZOU D L, LI Z L. Dynamic evaluation of drilling leakage risk based on fuzzy theory and PSO-SVR algorithm[J]. Future Generation Computer Systems-the International Journal of Escience,2019, 95: 454-466. DOI:10.1016/j.future.2018.12.068. [22] YANG Z, CE L, LIAN I. Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods[J]. Applied Energy, 2017, 190: 291-305. DOI:10.1016/j.apenergy.2016.12.130. [23] DENG W, YAO R, ZHAO H M. A novel intelligent diagnosis method using optimal LS-SVM with improved PSO algorithm[J]. Soft Computing, 2019, 23(7): 2445-2462. DOI:10.1007/s00500-017-2940-9. [24] FENG Z K, NIU W J, CHENG C T. Multi-objective quantum-behaved particle swarm optimization for economic environmental hydrothermal energy system scheduling[J]. Energy, 2017, 131: 165-178. DOI:10.1016/j.energy.2017.05.013. [25] SANKHADEEP C, SARBARTHA S, SIRSHENDU H, et al. Particle swarm optimization trained neural network for structural failure prediction of multistoried RC buildings[J]. Neural Computing & Applications, 2017, 28(8): 2005-2016. DOI: 10.1007/s00521-016-2190-2. [26] ZHOU J H, REN J X, YAO C F. Multi-objective optimization of multi-axis ball-end milling Inconel 718 via grey relational analysis coupled with RBF neural network and PSO algorithm[J]. Measurement, 2017, 102: 271-285. DOI: 10.1016/j.measurement.2017.01.057. [27] MAROUR N, ABDELGHANI B, ABDEREZAK J,et al. An effective and distributed particle swarm optimization algorithm for flexible job-shop scheduling problem[J]. Journal of Intelligent Manufacturing, 2018, 29(3): 603-615. DOI: 10.1007/s10845-015-1039-3. [28] TIEN BUI D, BUI Q T, NGUYEN Q P, et al. A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area[J]. Agricultural and Forest Meteorology, 2017, 233:32-44. [29] RAMDAN B A, AHMED F Z. A novel MPPT algorithm based on particle swarm optimization for photovoltaic systems[J]. IEEE Transactions on Sustainable Energy, 2017, 8(2): 468-476. DOI: 10.1109/TSTE.2016.2606421. [30] AGHAJANI G R, SHAYANFAR H A, SHAYEGHI H. Demand side management in a smart micro-grid in the presence of renewable generation and demand response[J]. Energy, 2017, 126: 622-637. DOI: 10.1016/j.energy.2017.03.051. [31] KABOLI S, FALLAHPOUR A, SELVARAJ J. Long-term electrical energy consumption formulating and forecasting via optimized gene expression programming[J]. Energy, 2017, 126: 144-164. DOI: 10.1016/j.energy.2017.03.009. [32] QI C C, FOURIE A, CHEN Q S. Neural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfill[J]. Construction and Building Materials, 2018, 159: 473-478. DOI: 10.1016/j.conbuildmat.2017.11.006. [33] MURALITHARAM K, SAKTHIVEL R,VISHNUVARTHAN R. Neural network based optimization approach for energy demand prediction in smart grid[J]. Neurocomputing, 2018, 273: 199-208. DOI: 10.1016/j.neucom.2017.08.017. [34] SELVARANI S,RAJENDRAN P. Detection of renal calculi in ultrasound Image using meta-heuristic support vector machine[J]. Journal of Medical Systems, 2019, 43: 300. DOI: 10.1007/s10916-019-1407-1. |