[1] BARLOW H B. Unsupervised learning[J]. Neural Computation, 1989, 1(3): 295-311. DOI: 10.1162/neco.1989.1.3.295. [2] LE Q V, RANZATO M A, MONGA R, et al. Building high-level features using large scale unsupervised learning[EB/OL].(2011-12-29)[2019-03-10] : arXiv:1112.6209[cs.LG]. https://arxiv.org/abs/1112.6209. [3] WANG X L, GUPTA A. Unsupervised learning of visual representations using videos[Z]. IEEE International Conference on Computer Vision, Santiago, 2015. DOI: 10.1109/iccv.2015.320. [4] PATHAK D, KRAHENBUHL P, DONAHUE J, et al. Context encoders: feature learning by inpainting[Z]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016. DOI: 10.1109/cvpr.2016.278. [5] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[EB/OL].(2014-6-10)[2019-3-15]. arXiv:1406.2661[stat.ML]. https://arxiv.org/abs/1406-2661. [6] ZHANG H, GOODFELLOW I, METAXAS D, et al. Self-attention generative adversarial networks[EB/OL].(2018-5-21)[2019-3-15]. arXiv:1805.08318 [stat.ML]. https://arxiv.org/abs/1805.08318. [7] LIN Z N, KHETAN A, FANTI G, et al. PacGAN: The power of two samples in generative adversarial networks[EB/OL].(2017-12-12)[2019-02-10]. arXiv:1712.04086[cs.LG]. https://arxiv.org/abs/1712.04086. [8] CUI Y R, LIU Q, GAO C Y, et al. FashionGAN: Display your fashion design using conditional generative adversarial nets[J]. Computer Graphics Forum, 2018, 37(7): 109-119. DOI: 10.1111/cgf.13552. [9] WANG T C, LIU M Y, ZHU J Y, et al. High-resolution image synthesis and semantic manipulation with conditional GANs[Z]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 2018. DOI: 10.1109/cvpr.2018.00917. [10] KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL].(2013-12-20)[2018-12-05]. arXiv:1312.6114 [stat.ML]. https://arxiv.org/abs/1312.6114v1. [11] SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for training GAN[EB/OL].(2016-6-10)[2018-11-25]. arXiv:1606.03498 [cs.LG]. https://arxiv.org/abs/1606.03498. [12] METZ L K, POOLE B, PFAU D, et al. Unrolled generative adversarial networks[EB/OL].(2016-12-7)[2018-11-22]. arXiv:1611.02163[cs.LG]. https://arxiv.org/abs/1611.02163. [13] DONAHUE J, Krähenbühl P, DARRELL T. Adversarial feature learning[EB/OL].(2016-5-31)[2018-10-9].arXiv:1605.09782 [cs.LG]. https://arxiv.org/abs/1605.09782. [14] ZENATI H, ROMAIN M, FOO C S, et al. Adversarially learned anomaly detection[Z]. IEEE International Conference on Data Mining, Singapore, 2018. DOI: 10.1109/icdm.2018.00088. [15] CHAPELLE O, SCHOÖLKOPF B, ZIEN A. Semi-supervised learning[J]. Journal of the Royal Statistical Society, 2006, 172(2):530-530. [16] ZHOU Z H, LI M. Semi-supervised learning by disagreement[J]. Knowledge and Information Systems, 2010, 24(3): 415-439. DOI: 10.1007/s10115-009-0209-z. [17] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein GAN[EB/OL].(2017-1-26)[2018-11-5]. arXiv:1701.07875[stat.ML]. https://arxiv.org/abs/1701.07875. [18] DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society: Series B(Methodological), 1977, 39(1): 1-22. DOI: 10.1111/j.2517-6161.1977.tb01600.x. [19] ARJOVSKY M, BOTTOU L. Towards principled methods for training generative adversarial networks[EB/OL].(2017-1-17)[2018-11-29]. arXiv:1701.04862[stat.ML]. https://arxiv.org/abs/1701.04862. [20] HA C W. Minimax and fixed point theorems[J]. Mathematische Annalen, 1980, 248(1): 73-77. DOI: 10.1007/bf01349255. [21] TIELEMAN T, HINTON G. RMSProp: Divide the gradient by a running average of its recent magnitude[R]. COURSERA: Neural Networks for Machine Learning, 2012. [22] LECUN Y, CORTES C. The MNIST database of handwritten digits[DB/OL]. [2018-10-15]. http://yann.lecun.com/exdb/mnist/. [23] XIAO H, RASUL K, VOLLGRAF R. Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms[EB/OL].(2017-8-25)[2018-11-10]. arXiv:1708.07747[cs.LG]. https://arxiv.org/abs/1708.07747. [24] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. DOI: 10.1109/tip.2003.819861. [25] ZHAO H, GALLO O, FROSIO I, et al. Loss functions for neural networks for image processing[EB/OL].(2015-11-28)[2018-11-16]. arXiv:1511.08861[cs.CV]. https://arxiv.org/abs/1511.08861. [26] WANG Z, SIMONCELLI E P, BOVIK A C. Multiscale structural similarity for image quality assessment[Z]. The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, Pacific Grove, 2003. DOI: 10.1109/acssc.2003.1292216. [27] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. DOI: 10.1109/5.726791. |