[1] WU X, KUMAR V, QUINLAN J R, et al. Top 10 algorithms in data mining[J]. Knowledge & Information Systems, 2007, 14(1): 1-37. DOI: 10.1007/s10115-007-0114-2. [2] BEZDEK J C, EHRLICH R, FULL W. FCM: The fuzzy c-means clustering algorithm[J]. Computers & Geosciences, 1984, 10(2-3):191-203. DOI: 10.1016/0098-3004(84)90020-7. [3] GUPTA A, DAATA S, DAS, S. Fast automatic estimation of the number of clusters from the minimum inter-center distance for k-means clustering[J]. Pattern Recognition Letters, 2018, 116:72-79. DOI: 10.1016/j.patrec.2018.09.003. [4] MASUD M A, HUANG J Z, WEI C H, et al. I-nice: A new approach for identifying the number of clusters and initial cluster centres[J]. Information Sciences, 2018, 466:129-151. DOI: 10.1016/j.ins.2018.07.034. [5] LORD E, WILLEMS M, LAPOINTE F J, et al. Using the stability of objects to determine the number of clusters in datasets[J]. Information Sciences, 2017, 393: 29-46. DOI:10.1016/j.ins.2017.02.010. [6] YU H, LIU Z G, WANG G Y. An automatic method to determine the number of clusters using decision-theoretic rough set[J]. International Journal of Approximate Reasoning, 2014, 55(1):101-115. DOI: 10.1016/j.ijar.2013.03.018. [7] JOSÉ-GARCÍA A, GÓMEZ-FLORES W. Automatic clustering using nature-inspired metaheuristics: a survey[J]. Applied Soft Computing, 2016, 41: 192-213. DOI:10.1016/j.asoc.2015.12.001. [8] HANCER E, KARABOGA D. A comprehensive survey of traditional, merge-split and evolutionary approaches proposed for determination of cluster number[J]. Swarm and Evolutionary Computation, 2017, 32:49-67. DOI: 10.1016/j.swevo.2016.06.004. [9] HAVENS T C, BEZDEK J C, LECKIE C, et al. Fuzzy c-means algorithms for very large data[J]. IEEE Transactions on Fuzzy Systems, 2012, 20(6): 1130-1146. DOI:10.1109/tfuzz.2012.2201485. [10] LUDWIG S A. MapReduce-based fuzzy c-means clustering algorithm: implementation and scalability[J]. International Journal of Machine Learning and Cybernetics, 2015, 6(6):923-934. DOI: 10.1007/s13042-015-0367-0. [11] BHARILL N, TIWARI A, MALVIYA A. Fuzzy based scalable clustering algorithms for handling big data using apache spark[J]. IEEE Transactions on Big Data, 2016, 2(4): 339-352. DOI:10.1109/tbdata.2016.2622288. [12] WU J J, WU Z A, CAO J, et al. Fuzzy consensus clustering with applications on big data[J]. IEEE Transactions on Fuzzy Systems, 2017, 25(6): 1430-1445. DOI:10.1109/tfuzz.2017.2742463. [13] 王磊, 邹恩岑, 曾诚, 等. 基于Spark的大数据聚类研究及系统实现[J]. 数据采集与处理, 2018, 33(6): 1077-1085. DOI:10.16337/j.1004-9037.2018.06.016. [14] 李应安. 基于MapReduce的聚类算法的并行化研究[D]. 广州: 中山大学, 2010. [15] 阳美玲. 基于MapReduce的K-means聚类算法的FPGA加速研究[D]. 武汉: 华中科技大学, 2016. [16] 张彬, 李继民, 张寿华, 等. 基于动态信任评估的政务数据云服务平台设计[J]. 河北大学学报(自然科学版), 2018, 38(4): 432-436. DOI:10.3969/j.issn.1000-1565.2018.04.014. [17] 高学伟, 付忠广,孙力, 等. 基于Hadoop分布式支持向量机球磨机大数据建模[J]. 河北大学学报(自然科学版), 2017, 37(3): 309-315. DOI: 10.3969/j.issn.1000-1565.2017.03.014. [18] 吴信东, 嵇圣硙. MapReduce与Spark用于大数据分析之比较[J]. 软件学报, 2008, 29(6): 1770-1791. DOI: 10.13328/j.cnki.jos.005557. [19] 宋杰, 孙宗哲, 毛克明,等. MapReduce大数据处理平台与算法研究进展[J]. 软件学报, 2017, 28(3): 514-543. DOI: 10.13328/j.cnki.jos.005169. [20] 翟俊海, 沈矗, 张素芳, 等. 基于Spark和SimHash的大数据K-近邻分类算法[J]. 河北大学学报(自然科学版), 2019, 39(2): 201-210. DOI:10.3969/j.issn.10001565.2019.02.014. [21] 张素芳, 翟俊海, 王聪, 等. 大数据与大数据机器学习研究[J]. 河北大学学报(自然科学版), 2018, 38(3): 299-308. DOI: 10.3969/j.issn.1000-1565.2018.03.011. |