[1] AUER S, BIZER C, KOBILAROV G, et al. DBpedia: A nucleus for a web of open data[M] //The Semantic Web. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007: 722-735. DOI:10.1007/978-3-540-76298-0_52. [2] SINGHAL A. Introducing the knowledge graph: Things, not strings. official blog(of Google)[EB/OL]. [2020-05-16].https://xueshu.baidu.com/usercenter/paper/show?paperid=fd83c56c8b22d3cc98d5f5f08a3c7aa8&site=xueshu_se. [3] 孙雨生,常凯月,朱礼军.大规模知识图谱及其应用研究[J].情报理论与实践,2018, 41(11): 138-143. DOI:10.16353/j.cnki.1000-7490.2018.11.025. [4] 陈悦,刘则渊.悄然兴起的科学知识图谱[J].科学学研究,2005, 23(2): 149-154. [5] 肖明,陈嘉勇,李国俊.基于CiteSpace研究科学知识图谱的可视化分析[J].图书情报工作,2011, 55(6): 91-95. [6] 王晰巍,韦雅楠,邢云菲,等.社交网络舆情知识图谱发展动态及趋势研究[J].情报学报,2019, 38(12): 1329-1338. DOI:10.3772/j.issn.1000-0135.2019.12.010. [7] NIU X, SUN X, WANG H: 2011. Zhishi. me-weaving chinese linking open data[EB/OL]. The Semantic Web-ISWC.[2020-3-16]. https://blog.csdn.net/Taunt_/article/details/109322408. [8] WANG Z, LI J, WANG Z. Xlore: Alarge- scale english-Chinese bilingual knowledge graph[C] //Proceedings of the 12th International Semantic web Conference(Posters & Demonstrations Track), 2013:121-124. [9] XU B, XU Y, LIANG J, et al. CN-DBpedia: A never-ending Chinese knowledge extraction system[C] //International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, Springer, Cham, 2017. [10] 官赛萍,靳小龙,贾岩涛,等.面向知识图谱的知识推理研究进展[J].软件学报,2018, 29(10): 2966-2994. DOI:10.13328/j.cnki.jos.005551. [11] 王鑫,邹磊,王朝坤,等.知识图谱数据管理研究综述[J].软件学报,2019, 30(7): 2139-2174. DOI:10.13328/j.cnki.jos.005841. [12] 朱世玲.网络行为“基因”的图谱结构分析[D].南京:南京邮电大学,2019. [13] 刘欣灵.分析:现有社交图谱无法反映真实人际关系[EB/OL]. [2020-04-27].https://it.sohu.com/20111109/n325088297.shtml. [14] LU T, HU X. Overview of knowledge mapping construction technology[Z]. The 8th Joint International Information Technology and Artificial Intelligence Conference, Chongqing, 2019. [15] ABREU D D, FLORES A, PALMA G, et al. Choosing between graph databases and RDF engines for consuming and mining linked data[C] //CEUR Workshop Proceedings, 2013: 1034. [16] 漆桂林,高桓,吴天星.知识图谱研究进展[J].情报工程, 2017, 3(1): 4-25. DOI:10.3772/j.issn.2095-915x.2017.01.002. [17] NGUYEN T N, TAKEDA H, NGUYEN K, et al. A novel method to predict type for DBpedia entity[M] //Modern Approaches for Intelligent Information and Database Systems, Cham: Springer International Publishing, 2018: 125-134. DOI:10.1007/978-3-319-76081-0_11. [18] WU F, WELD D S. Open information extraction using Wikipedia[Z]. The 48th Annual Meeting of the Association for Computational Linguistics, Uppsala, Sweden, 2010. [19] SURDEANU M, TIBSHIRANI J, NALLAPATI R, et al. Multi-instance multi-label learning for relation extraction[Z]. Joint Conference on Empirical Methods in Natural Language Processing & Computational Natural Language Learning,Jeju Island, 2012. [20] LIU X H, ZHANG S D, WEI F, et al. Recognizing named entities in tweets [C] //Proc of the 49th Annual Meeting of the Association for Computational Linguistics: Human Lnguage Technologies, Stroudsburg, PA:ACL, 2011:359-367. [21] XIAO L, WELD D. Fine-grained entity recognition [Z]. The 26th Conference on Association for the Advancement of Artificial Intelligence, Menlo Park, 2012. [22] 王莉峰.领域自适应的中文实体关系抽取研究[D].哈尔滨:哈尔滨工业大学,2011. [23] 王志超.面向知识图谱构建的实体行为与关系抽取技术研究与实现[D].长沙:国防科学技术大学,2018. [24] 秦兵,刘安安,刘挺.无指导的中文开放式实体关系抽取[J].计算机研究与发展,2015,52(5):1029-1035. [25] 杨博,蔡东风,杨华.开放式信息抽取研究进展[J].中文信息学报,2014,28(4):1-11. [26] MAUSAM, SCHMITZ M, BART R. Open language learning for information extraction[C] //Joint Conference on Empirical Methods in Natural Language Processing & Computational Natural Language Learning, Association for Computational Linguistics, 2012. [27] AKBIK A, ALEXANDER LÖSER. KRAKE N: N-ary facts in open information extraction[C] //Joint Workshop on Automatic Knowledge Base Construction & Web-scale Knowledge Extraction. Association for Computational Linguistics, 2012. [28] DOMINGOS P, WEBB A. A tractable first-order probabilistic logic[Z]. The 26th AAAI Conference on Artificial Intelligence, San Francisco, 2012. [29] WANG Y, TAN S B, LIAO X W, et al. Extracted domain model based on named attribute extraction[J]. Journal of Computer Research and Development, 2010,47(9): 1567-1573. [30] SUCHANEK F M, KASNECI G, WEIKUM G. Yago: a core of semantic knowledge[Z]. The 16th international conference on World Wide Web - WWW'Banff, Alberta, Canada, 2007. DOI:10.1145/1242572.1242667. [31] 杨晓慧,万睿,张海滨,等.基于符号语义映射的知识图谱表示学习算法[J].计算机研究与发展,2018, 55(8): 1773-1784. DOI:10.7544/issn1000-1239.2018.20180248. [32] LIU Z Y, SUN M S, LIN Y K, et al. Knowledge representation learning: a review[J]. Computer Research and Development, 2016, 53(2): 247-261. DOI:10.7544/issn1000-1239.2016.20160020. [33] BORDES A, WWSTON J, COLLOBERT R, et al. Learnting structured embeddings for knowledge bases[Z]. The 25th Conference on Association for the Advancement of Artificial Intelligence, Menlo park, 2001. [34] SOCHER R, CHEN D Q, MANNING C D, et al. Reasoning with neural tensor networks for knowledge base completion[Z].Advances in Neural Information Processing Systems, Lake Tahoe, Nevada, 2013. [35] JENATTON R, ROUX N L, BORDES A, et al. A latent factor model for highly multi-relational data[Z]. International Conference on Neural Information Processing Systems Curran Associates Inc, Qatar, 2012. [36] YANG B S, YIH W T, HE X D, et al. Embedding entities and relations for learning and inference in knowledge bases[EB/OL].[2020-04-20]. https://arxiv.org/abs/1412.6575. [37] SOCHER R, CHEN D Q, MANNING C D, et al. Reasoning with neural tensor networks for knowledge base completion[Z].Advances in Neural Information Processing Systems, Lake Tahoe, Nevada, 2013. [38] NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data[Z]. The 28th International Conference on Machine Learning, Bellevue, Washington, 2011. [39] BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[Z].Advances in Neural Information Processing Systems, Lake Tahoe, Neavda, 2013. [40] WANG Z, LI L, LI Q, et al. Multimodal data enhanced representation learning for knowledge graphs[Z]. The 2019 International Joint Conference on Neural Networks, Budapest, Hungary, 2019. DOI:10.1109/ijcnn.2019.8852079. [41] HE M, DU X K, WANG B. Representation learning of knowledge graphs via fine-grained relation description combinations[J]. IEEE Access, 2019, 7(99):26466-26473. DOI:10.1109/ACCESS.2019.2901544. [42] SEO S, OH B, LEE K H. Reliable knowledge graph path representation learning[J]. IEEE Access, 2020, 99:1-1. DOI:10.1109/ACCESS.2020.2973923. [43] SUN J, XU G, CHENG Y, et al. Knowledge map completion method based on metric space and relational Path[Z]. 14th International Conference on Computer Science & Education(ICCSE), Toronto, 2019. [44] ZHANG Z W, CAO L, CHEN X L, et al. Representation learning of knowledge graphs with entity attributes[J]. IEEE Access, 2020(99):1-1. DOI:10.1109/ACCESS.2020.2963990. [45] 林海伦,王元卓,贾岩涛,等.面向网络大数据的知识融合方法综述[J].计算机学报,2017, 40(1): 1-27. [46] SONG Y, LI A, JIA Y, et al. Knowledge fusion: Introduction of concepts and techniques[Z]. Fourth International Conference on Data Science in Cyberspace(DSC), Hangzhou, 2019. [47] PARUNDEKAR R, KNOBLOCK C A, AMBITE J L. Linking and building ontologies of linked data[M] //Lecture Notes in Computer Science, Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 598-614. DOI:10.1007/978-3-642-17746-0_38. [48] JAIN P, HITZLER P, SHETH A P, et al. Ontology alignment for linked open data[M] //Lecture Notes in Computer Science, Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 402-417. DOI:10.1007/978-3-642-17746-0_26. [49] VOLZ J, BIZER C, GAEDKE M, et al. Discovering and maintaining links on the web of data[M] //Lecture Notes in Computer Science, Berlin, Heidelberg: Springer Berlin Heidelberg, 2009: 650-665. DOI:10.1007/978-3-642-04930-9_41. [50] CHEN K R, PAN J. Multi-source data fusion based on the expand vector space model[J]. Journal of Shandong University(Natural Science), 2013,48(11):87-92. [51] NIU X, SUN X R, WANG H F, et al. Zhishi.me-weaving Chinese linking open data[M] //The Semantic Web – ISWC 2011, Berlin, Heidelberg: Springer Berlin Heidelberg, 2011: 205-220. DOI:10.1007/978-3-642-25093-4_14. [52] TAN C H, AGICHTEIN E, IPEIROTIS P, et al. Trust, but verify: predicting contribution quality for knowledge base construction and curation[Z].The 7th ACM international conference on Web search and data mining-WSDM'14, New York, 2019. DOI:10.1145/2556195.2556227. [53] JAY P, HUI M. Knowledge Graph Identification[Z]. International Semantic Web Conference, Sydeny, 2013. DOI:10.1007/978-3-642-41335-3_34. ( |