河北大学学报(自然科学版) ›› 2021, Vol. 41 ›› Issue (1): 87-92.DOI: 10.3969/j.issn.1000-1565.2021.01.013

• • 上一篇    下一篇

基于三维曲面重建的CT图像肺边界缺陷修复

张欣1,徐永潇1,王兵2   

  • 收稿日期:2019-12-17 发布日期:2021-02-05
  • 通讯作者: 王兵(1966—)
  • 作者简介:张欣(1966—),男,河北承德人,河北大学教授,博士,主要从事机器视觉方向的研究.
    E-mail:zhangxin@hbu.edu.cn
  • 基金资助:
    河北省自然科学基金资助项目(F2017201172);河北省教育厅重点项目(ZD2018210)

Restoration of lung boundary defects in CT images based on 3D surface reconstruction

ZHANG Xin1, XU Yongxiao1, WANG Bing2   

  1. 1. College of Electronic and Information Engineering, Hebei University, Baoding 071002, China; 2.College of Mathematics and Information Science, Hebei University, Baoding 071002, China
  • Received:2019-12-17 Published:2021-02-05

摘要: 针对CT图像的肺实质分割中由边界粘连型肿瘤造成的肺边界缺陷修复问题,提出了一种基于三维曲面重建的修复方法.对肺实质边界曲率变化较大处的缺陷,二维图像上无法获得足够多的特征对肺实质边界进行修复.本文方法首先使用质心灰度法改进了三维区域生长算法,提取肺实质进行三维重建.再使用阈值法提取分布在缺陷周围的三维点云,对三维点云进行曲面重建即可得到完整的肺实质轮廓.实验结果表明:该方法与传统的凸包算法和滚球法相比,能够更加完整有效地修复边界粘连型肺实质边界的缺陷.

关键词: 肺边界缺陷修复, 区域生长, 三维曲面重建

Abstract: To solve the problem of restoring the lung boundary defects caused by the lung boundary adhesion tumor in CT image segmentation of the lung parenchyma, a method based on three-dimensional surface reconstruction is proposed. For defects with large curvature of the lung parenchymal boundary, the two-dimensional image cannot obtain enough features to restore the lung parenchymal boundary. In this paper, firstly, the centroid-gray algorithm is used to improve the three-dimensional region growth algorithm, and the lung parenchyma is extracted for three-dimensional reconstruction. Then the threshold method is used to extract the three-dimensional point cloud distributed around the defects, a complete outline of the lung parenchyma can be obtained by the surfase reconstruction of the three-dimensional point cloud. The experimental results show that compared with the traditional convex hull algorithm and the rolling ball method, this method is more complete and effective to restore the defects of lung parenchymal boundary with adhesion tumors.

Key words: restoration of lung boundary defects, region growing, three-dimensional surface reconstruction

中图分类号: