[1] LIAO X Y, LI J, MUHAMMAD A I, et al. Preceding treatment of non-thermal plasma(NTP)assisted the bactericidal effect of ultrasound on staphylococcus aureus [J]. Food Control, 2018, 90: 241-248. DOI: 10.1016/j.foodcont.2018.03.008. [2] CHEN Z T, LIN L, GJIKA E, et al. Selective treatment of pancreatic cancer cells by plasma-activated saline solutions [J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2018, 2(2): 116-120. DOI: 10.1109/TRPMS.2017.2761192. [3] KEIDAR M. A prospectus on innovations in the plasma treatment of cancer [J]. Physics of Plasmas, 2018, 25(8): 083504. DOI: 10.1063/1.5034355. [4] CHEN Z T, ZHANG S Q, LEVCHENKO I, et al. In vitro demonstration of cancer inhibiting properties from stratified self-organized plasma-liquid interface [J]. Scientific Reports, 2017, 7: 12163. DOI: 10.1038/s41598-017-12454-9. [5] LI X C, LIU R J, LI X N, et al. Large-scale surface modification to improve hydrophilicity through using a plasma brush operated at one atmospheric pressure [J]. Physics of Plasmas, 2019, 26(2): 023510. DOI: 10.1063/1.5063328. [6] HUANG H, GAO M, KANG Y H, et al, Rapid and scalable production of high-quality phosphorene by plasma-liquid technology [J]. Chemical Communications, 2020, 56(2): 221-224. DOI: 10.1039/C9CC07640A. [7] NING W J, DAI D, ZHANG Y H. Inducing discharges in a micrometer catalyst channel by a helium atmospheric pressure plasma jet [J]. Applied Physics Letters, 2019, 114(5): 054104. DOI: 10.1063/1.5082205. [8] LI X, YANG D Z, YUAN H, et al. Detection of trace heavy metals using atmospheric pressure glow discharge by optical emission spectra [J]. High Voltage, 2019, 4(3): 228-233. DOI: 10.1049/hve.2019.0084. [9] ZASTAWNY H, SOSA R, GRONDONA D, et al. Development of a trielectrode plasma curtain at atmospheric pressure[J]. Applied Physics Letters, 2008, 93(3):593. DOI: 10.1063/1.2960996. [10] DENG X L, NIKIFOROV A Y, IONITA E R, et al. Absolute and relative emission spectroscopy study of 3 cm wide planar radio frequency atmospheric pressure bio-plasma source[J]. Applied Physics Letters, 2015, 107(5): 053702. DOI: 10.1063/1.4928470. [11] LI L, LIU L, LIU Y L, et al. Analysis and experimental study on formation conditions of large- scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode [J]. Journal of Applied Physics, 2014, 115(2): 023301. DOI: 10.1063/1.4861382. [12] TEODORESCU M, BAZAVAN M, IONITA E R, et al. Characteristics of a long and stable filamentary argon plasma jet generated in ambient atmosphere [J]. Plasma Sources Science and Technology, 2015, 24(2): 025033. DOI: 10.1088/0963-0252/24/2/025033. [13] LI X, LIU Y F, WANG L F, et al. Uniformity improvement of plumes in an atmospheric pressure argon plasma jet array by electric field optimization [J]. The European Physical Journal D, 2019, 73: 174-183. DOI: 10.1140/epjd/e2019-90643-9. [14] CAO Z, NIE Q, BAYLISS D L, et al. Spatially extended atmospheric plasma arrays [J]. Plasma Sources Science and Technology, 2010, 19(2): 025003. DOI: 10.1088/0963-0252/19/2/025003. [15] ZHANG C, SHAO T, ZHOU Y X, et al. Effect of O2 additive on spatial uniformity of atmospheric-pressure helium plasma jet array driven by microsecond-duration pulses [J]. Applied Physics Letters, 2014, 105(4): 044102. DOI: 10.1063/1.4887992. [16] WANG R X, SUN H, ZHU W D, et al. Uniformity optimization and dynamic studies of plasma jet array interaction in argon [J]. Physics of Plasmas, 2017, 24(9): 093507. DOI: 10.1063/1.4998469. [17] WAN M, LIU F, FANG Z, et al. Influence of gas flow and applied voltage on interaction of jets in a cross-field helium plasma jet array [J]. Physics of Plasmas, 2017, 24(9): 093514. DOI: 10.1063/1.4991531. [18] WANG L F, LI X, LIU F, et al. Influence of high-voltage electrode arrangement on downstream uniformity of jet array [J]. IEEE Transactions on Plasma Science, 2019, 47(5): 1926-1932. DOI: 10.1109/tps.2019.2901528. [19] TANG J, CAO W Q, ZHAO W, et al. Characterization of stable brush-shaped large-volume plasma generated at ambient air [J]. Physics of Plasmas, 2012, 19(1):013501. DOI: 10.1063/1.3672511. [20] LI Q, TAKANA H, PU Y K, et al. A nonequilibrium argon-oxygen planar plasma jet using a half-confined dielectric barrier duct in ambient air [J]. Applied Physics Letters, 2012, 100(13): 133501. DOI: 10.1063/1.3698135. [21] LI X C, BAO W T, JIA P Y, et al. A brush-shaped air plasma jet operated in glow discharge mode at atmospheric pressure [J]. Journal of Applied Physics, 2014, 116(2): 023302. DOI: 10.1063/1.4889923. [22] LI X C, CHU J D, JIA P Y, et al. Characterization of a laminar plasma plume based on dielectric-barrier discharge at atmospheric pressure [J]. IEEE Transactions on Plasma Science, 2018, 46(3): 582-586. DOI: 10.1109/TPS.2018.2797954. [23] LI X C, CHU J D, ZHANG Q, et al. Performance of a large-scale barrier discharge plume improved by an upstream auxiliary barrier discharge [J]. Applied Physics Letters, 2016, 109(20): 204102. DOI: 10.1063/1.4966558. [24] LI Q, TAKANA H, PU Y K, et al. An atmospheric pressure quasiuniform planar plasma jet generated by using a dielectric barrier configuration [J]. Applied Physics Letters, 2011, 98(24): 241501. DOI: 10.1063/1.3599845. [25] JIANG W M, LI J, TANG J, et al. Prediction of nested complementary pattern in argon dielectric-barrier discharge at atmospheric pressure [J]. Scientific Reports, 2015, 5: 16391. DOI: 10.1038/srep16391. [26] MASSINES F, RABEHI A, DECOMPS P, et al. Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier [J]. Journal of Applied Physics, 1998, 83(6): 2950-2957. DOI: 10.1063/1.367051. [27] LEE D, PARK J M, HONG S H, et al. Numerical simulation on mode transition of atmospheric dielectric barrier discharge in helium-oxygen mixture [J]. IEEE Transactions on Plasma Science, 2005, 33(2): 949-957. DOI: 10.1109/TPS.2005.844493. [28] JIANG W M, TANG J, WANG Y S, et al. Influence of driving frequency on discharge modes in a dielectric-barrier discharge with multiple current pulses [J]. Physics of Plasmas, 2013, 20(7): 073509. DOI: 10.1063/1.4817289. [29] JIANG N, JI A L, CAO Z X. Atmospheric pressure plasma jet: Effect of electrode configuration, discharge behavior, and its formation mechanism [J]. Journal of Applied Physics, 2009, 106(1): 013308. DOI: 10.1063/1.3159884. [30] JIANG N, JI A L, CAO Z X. Atmospheric pressure plasma jets beyond ground electrode as charge overflow in a dielectric barrier discharge setup [J]. Journal of Applied Physics, 2010, 108(3): 033302. DOI: 10.1063/1.3466993. [31] KARAKAS E, LAROUSSI M. Experimental studies on the plasma bullet propagation and its inhibition [J]. Journal of Applied Physics, 2010, 108(6): 063305. DOI: 10.1063/1.3483935. [32] MASSINES F, SEGUR P, GHERARDI N, et al. Physics and chemistry in a glow dielectric barrier discharge at atmospheric pressure: diagnostics and modelling [J]. Surface and Coatings Technology, 2003, 174: 8-14. DOI: 10.1016/S0257-8972(03)00540-1. [33] QIN J, PASKO V P. On the propagation of streamers in electrical discharges[J]. Journal of Physics D Applied Physics, 2014, 47(43): 435202. DOI: 10.1088/0022-3727/47/43/435202. ( |