[1] DING C S, NIEDERREITER H. Cyclotomic linear codes of order 3[J]. IEEE Trans Inf Theory, 2007, 53(6): 2274-2277. DOI:10.1109/TIT.2007.896886. [2] JIAN G P, LIN Z C, FENG R Q. Two-weight and three-weight linear codes based on Weil sums[J]. Finite Fields Appl, 2019, 57: 92-107. DOI:10.1016/j.ffa.2019.02.001. [3] 杜小妮,吕红霞,王蓉.一类四重和六重线性码的构造[J].电子与信息学报, 2019, 41(12): 2995-2999. [4] YANG S D, YAO Z A. Complete weight enumerators of a family of three-weight linear codes[J]. Des Codes Cryptogr, 2017, 82(3): 663-674. DOI:10.1007/s10623-016-0191-x. [5] 杨淑娣,岳勤.一类线性码的完全重量分布[J].计算机工程与科学, 2019, 41(2): 281-285. DOI:10.3969/j.issn.1007-130X.2019.02.013. [6] LU H, YANG S D. Two classes of linear codes from Weil sums[J]. IEEE Access, 2020, 8: 180471-180480. DOI:10.1109/ACCESS.2020.3028141. [7] LIDL R, NIEDERREITER H. Finite Fields[M]. Cambridge: Cambridge University Press, 1997. DOI:10.1017/cbo9780511525926. [8] DING K L, DING C S. A class of two-weight and three-weight codes and their applications in secret sharing[J]. IEEE Trans Inf Theory, 2015, 61(11): 5835-5842. DOI:10.1109/TIT.2015.2473861. [9] COULTER R S. Explicit evaluations of some Weil sums[J]. Acta Arith, 1998, 83(3): 241-251. DOI:10.4064/aa-83-3-241-251. [10] COULTER R S. Further evaluations of Weil sums[J]. Acta Arith, 1998, 86(3): 217-226. DOI:10.4064/aa-86-3-217-226. [11] HUFFMAN W C, PLESS V. Fundamentals of Error-Correcting Codes[M]. Cambridge: Cambridge University Press, 2003. DOI:10.1017/cbo9780511807077. [12] KONG X L, YANG S D. Complete weight enumerators of a class of linear codes with two or three weights[J]. Discrete Math, 2019, 342(11): 3166-3176. DOI:10.1016/j.disc.2019.06.025. ( |