[1] YOUNG A D, GILLUNG J P. Phylogenomics — principles, opportunities and pitfalls of big-data phylogenetics[J]. Syst Entomol, 2020, 45(2): 225-247. DOI: 10.1111/syen.12406. [2] ZHANG J, LAI J. Phylogenomic approaches in systematic studies[J]. Zool Syst, 2020, 45(3): 151-162. DOI:10.11865/zs.202021. [3] PRUM R O, BERV J S, DORNBURG A, et al. A comprehensive phylogeny of birds(Aves)using targeted next-generation DNA sequencing[J]. Nature, 2015, 526(7574): 569-573. DOI:10.1038/nature15697. [4] WALKER J F, BROWN J W, SMITH S A. Analyzing contentious relationships and outlier genes in phylogenomics[J]. Syst Biol, 2018, 67(5): 916-924. DOI:10.1093/sysbio/syy043. [5] CHEN M Y, LIANG D, ZHANG P. Phylogenomic resolution of the phylogeny of laurasiatherian mammals: exploring phylogenetic signals within coding and noncoding sequences[J]. Genome Biol Evol, 2017, 9(8): 1998-2012. DOI:10.1093/gbe/evx147. [6] GARRISON N L, RODRIGUEZ J, AGNARSSON I, et al. Spider phylogenomics: untangling the spider tree of life[J]. PeerJ, 2016, 4(2): e1719. DOI:10.7717/peerj.1719. [7] MADDISON W P, EVANS S C, HAMILTON C A, et al. A genome-wide phylogeny of jumping spiders(Araneae, Salticidae), using anchored hybrid enrichment[J]. Zookeys, 2017, 2017(695): 89-101. DOI:10.3897/zookeys.695.13852. [8] FORTHMAN M, MILLER C W, KIMBALL R T. Phylogenomic analysis suggests Coreidae and Alydidae(Hemiptera: Heteroptera)are not monophyletic[J]. Zool Scr, 2019, 48(4): 520-534. DOI:10.1111/zsc.12353. [9] FAIRCLOTH B C, MCCORMACK J E, CRAWFORD N G, et al. Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales[J]. Syst Biol, 2012, 61(5): 717-726. DOI:10.1093/sysbio/sys004. [10] BEJERANO G, PHEASANT M, MAKUNIN I, et al. Ultraconserved elements in the human genome[J]. Science, 2004, 304(5675): 1321-1325. DOI:10.1126/science.1098119. [11] STEPHEN S, PHEASANT M, MAKUNIN I V, et al. Large-scale appearance of ultraconserved elements in tetrapod genomes and slowdown of the molecular clock[J]. Mol Biol Evol, 2007, 25(2): 402-408. DOI:10.1093/molbev/msm268. [12] MCCORMACK J E, FAIRCLOTH B C, CRAWFORD N G, et al. Ultraconserved elements are novel phylogenomic markers that resolve placental mammal phylogeny when combined with species-tree analysis[J]. Genome Res, 2012, 22(4): 746-754. DOI:10.1101/gr.125864.111. [13] MCCORMACK J E, HARVEY M G, FAIRCLOTH B C, et al. A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing[J]. PLoS One, 2013, 8(1): e54848. DOI:10.1371/journal.pone.0054848. [14] MEIKLEJOHN K A, FAIRCLOTH B C, GLENN T C, et al. Analysis of a rapid evolutionary radiation using ultraconserved elements: evidence for a bias in some multispecies coalescent methods[J]. Syst Biol, 2016, 65(4): 612-627. DOI:10.1093/sysbio/syw014. [15] CHEN D, BRAUN E L, FORTHMAN M, et al. A simple strategy for recovering ultraconserved elements, exons, and introns from low coverage shotgun sequencing of museum specimens: placement of the partridge genus Tropicoperdix within the galliformes[J]. Mol Phylogenetics Evol, 2018, 129: 304-314. DOI:10.1016/j.ympev.2018.09.005. [16] WHITE N D, BRAUN M J. Extracting phylogenetic signal from phylogenomic data: Higher-level relationships of the nightbirds(Strisores)[J]. Mol Phylogenetics Evol, 2019, 141:106611. DOI:10.1016/j.ympev.2019.106611. [17] FAIRCLOTH B C, SORENSON L, SANTINI F, et al. A phylogenomic perspective on the radiation of ray-finned fishes based upon targeted sequencing of ultraconserved elements(UCEs)[J]. PLoS One, 2013, 8(6): e65923. DOI:10.1371/journal.pone.0065923. [18] LONGO S J, FAIRCLOTH B C, MEYER A, et al. Phylogenomic analysis of a rapid radiation of misfit fishes(Syngnathiformes)using ultraconserved elements[J]. Mol Phylogenetics Evol, 2017, 113: 33-48. DOI:10.1016/j.ympev.2017.05.002. [19] HULSEY C D, ZHENG J, FAIRCLOTH B C, et al. Phylogenomic analysis of Lake Malawi cichlid fishes: further evidence that the three-stage model of diversification does not fit[J]. Mol Phylogenetics Evol, 2017, 114: 40-48. DOI:10.1016/j.ympev.2017.05.027. [20] OCHOA L E, DATOVO A, DONASCIMIENTO C, et al. Phylogenomic analysis of trichomycterid catfishes(Teleostei: Siluriformes)inferred from ultraconserved elements[J]. Sci Rep, 2020, 10: 2697. DOI:10.1038/s41598-020-59519-w. [21] PIE M R, BORNSCHEIN M R, RIBEIRO L F, et al. Phylogenomic species delimitation in microendemic frogs of the Brazilian Atlantic Forest[J]. Mol Phylogenetics Evol, 2019, 141: 106627. DOI:10.1016/j.ympev.2019.106627. [22] GUILLORY W X, MUELL M R, SUMMERS K, et al. Phylogenomic reconstruction of the neotropical poison frogs(Dendrobatidae)and their conservation[J]. Diversity, 2019, 11(8): 126. DOI:10.3390/d11080126. [23] FAIRCLOTH B C, BRANSTETTER M G, WHITE N D, et al. Target enrichment of ultraconserved elements from arthropods provides a genomic perspective on relationships among Hymenoptera[J]. Mol Ecol Resour, 2015, 15(3): 489-501. DOI:10.1111/1755-0998.12328. [24] BRANSTETTER M G, DANFORTH B N, PITTS J P, et al. Phylogenomic insights into the evolution of stinging wasps and the origins of ants and bees[J]. Curr Biol, 2017, 27(7): 1019-1025. DOI:10.1016/j.cub.2017.03.027. [25] CRUAUD A, NIDELET S, ARNAL P, et al. Optimized DNA extraction and library preparation for minute arthropods: application to target enrichment in chalcid wasps used for biocontrol[J]. Mol Ecol Res, 2019, 19(3): 702-710. DOI:10.1111/1755-0998.13006. [26] SUN X, DING Y H, ORR M C, et al. Streamlining universal single-copy orthologue and ultraconserved element design: a case study in Collembola[J]. Mol Ecol Resour, 2020, 20(3): 706-717. DOI:10.1111/1755-0998.13146. [27] STARRETT J, DERKARABETIAN S, HEDIN M, et al. High phylogenetic utility of an ultraconserved element probe set designed for Arachnida[J]. Mol Ecol Resour, 2017, 17(4): 812-823. DOI:10.1111/1755-0998.12621. [28] HEDIN M, DERKARABETIAN S, ALFARO A, et al. Phylogenomic analysis and revised classification of atypoid mygalomorph spiders(Araneae, Mygalomorphae), with notes on arachnid ultraconserved element loci[J]. PeerJ, 2019, 7: e6864. DOI:10.7717/peerj.6864. [29] DERKARABETIAN S, BENAVIDES L R, GIRIBET G. Sequence capture phylogenomics of historical ethanol-preserved museum specimens: Unlocking the rest of the vault[J]. Mol Ecol Resour, 2019, 19(6): 1531-1544. DOI:10.1111/1755-0998.13072. [30] MADDISON W P,MADDISON D R,DERKARABETIAN S, et al. Sitticine jumping spiders: phylogeny,classification, and chromosomes(Araneae, Salticidae, Sitticini)[J]. Zookeys, 2020,925:1-54.DOI: 10.3897/zookeys.925.39691. [31] FAIRCLOTH B C. PHYLUCE is a software package for the analysis of conserved genomic loci[J]. Bioinformatics, 2015, 32(5): 786-788. DOI:10.1093/bioinformatics/btv646. [32] PRJIBELSKI A, ANTIPOV D, MELESHKO D, et al. Using SPAdes de novo assembler[J]. Curr Protoc Bioinform, 2020, 70(1): e102. DOI:10.1002/cpbi.102. [33] JACKMAN S D, VANDERVALK B P, MOHAMADI H, et al. ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter[J]. Genome Res, 2017, 27(5): 768-777. DOI:10.1101/gr.214346.116. [34] ZERBINO D R, BIRNEY E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs[J]. Genome Res, 2008, 18(5): 821-829. DOI:10.1101/gr.074492.107. [35] GRABHERR M G, HAAS B J, YASSOUR M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nat Biotechnol, 2011, 29(7): 644-652. DOI:10.1038/nbt.1883. [36] CHIKHI R, RIZK G. Space-efficient and exact de Bruijn graph representation based on a bloom filter[J]. Lecture Notes in Computer Science(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2012, 7534 LNBI: 236-248. [37] FAIRCLOTH B C. Illumiprocessor: a trimmomatic wrapper for parallel adapter and quality trimming[J]. 2013, http://dx.doi.org/10.6079/J9ILL. [38] ZHANG F, DING Y, ZHU C D, et al.Phylogenomics from low-coverage whole-genome sequencing[J]. Mtthods Ecol Evol, 2019,10(4): 507-517. DOI: 10.1111/2041-210X.13145. [39] FOROUZAN E, MALEKI M S M, KARKHANE A A, et al. Evaluation of nine popular de novo assemblers in microbial genome assembly[J]. J Microbiol Methods, 2017, 143: 32-37. DOI:10.1016/j.mimet.2017.09.008. [40] SALZBERG S L, PHILLIPPY A M, ZIMIN A, et al. GAGE: a critical evaluation of genome assemblies and assembly algorithms[J]. Genome Res, 2012, 22(3): 557-567. DOI: 10.1101/gr.131383.111. [41] ABBAS M M, MALLUHI Q M, BALAKRISHNAN P. Assessment of de novo assemblers for draft genomes: a case study with fungal genomes[J]. BMC Genomics, 2014, 15(Suppl.9): 10. DOI:10.1186/1471-2164-15-S9-S10. ( |