[1] 曹磊,王强,史润佳,等.基于改进RPN的Faster-RCNN网络SAR图像车辆目标检测方法[J].东南大学学报(自然科学版), 2021, 51(1): 87-91. DOI: 10.3969/j.issn.1001-0505.2021.01.012. [2] 李勇,杨德东,韩亚君,等.融合扰动感知模型的孪生神经网络目标跟踪[J].光学学报, 2020, 40(4): 120-131. DOI: 10.3788/AOS202040.0415002. [3] LI B, YAN J J, WU W, et al. High performance visual tracking with Siamese region proposal network[C] //2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA. IEEE, 2018: 8971-8980. DOI: 10.1109/CVPR.2018.00935. [4] ZHU Z, WANG Q, LI B, et al. Distractor-aware Siamese networks for visual object tracking[C] //European Conference on Computer Vision, Cham: Springer, 2018: 103-119. DOI: 10.1007/978-3-030-01240-3_7. [5] 要小涛,王正勇,石伟,等.基于感知哈希与尺度不变特征变换的快速拼接算法[J].四川大学学报(自然科学版), 2021, 58(3): 89-96. DOI: 10.19907/j.0490-6756.2021.033002. [6] HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Trans Pattern Anal Mach Intell, 2015, 37(3): 583-596. DOI: 10.1109/TPAMI.2014.2345390. [7] 王思乐,王铭羽,杨文柱,等.基于时空加权的多特征融合动作识别算法[J].河北大学学报(自然科学版), 2019, 39(1): 93-98. DOI: 10.3969/j.issn.1000-1565.2019.01.016. [8] 葛雯,史正伟.改进YOLOV3算法在行人识别中的应用[J].计算机工程与应用, 2019, 55(20): 128-133. DOI: 10.3778/j.issn.1002-8331.1901-0318. [9] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C] //European Conference on Computer Vision, Cham: Springer, 2014: 740-755. DOI: 10.1007/978-3-319-10602-1_48. [10] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C] //2017 IEEE Conference on Computer Vision, and Pattern Recognition(CVPR), July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 936-944. DOI: 10.1109/CVPR.2017.106. [11] KINGMA D P, BA J L. Adam: a method for stochastic optimization[C] // 2015 International Conference on Learning Representations, May 7-9, 2015, San Diego, CA, USA, Computer Science, 2015:1-15. DOI: 10.48550/arXiv.1412.6980. [12] ZHENG L, SHEN L Y, TIAN L, et al. Scalable person re-identification: a benchmark[C] //2015 IEEE International Conference on Computer Vision(ICCV), December 7-13, 2015, Santiago, Chile, IEEE, 2016: 1116-1124. DOI: 10.1109/ICCV.2015.133. [13] WEINBERGER K Q, SAUL L K. Distance metric learning for large margin nearest neighbor classification[J]. J Mach Learn Res, 2009, 10: 207-244. DOI: 10.1007/s10845-008-0108-2. [14] WU Y, LIM J, YANG M H. Object tracking benchmark[J]. IEEE Trans Pattern Anal Mach Intell, 2015, 37(9): 1834-1848. DOI: 10.1109/TPAMI.2014.2388226. [15] JIA X, LU H C, YANG M H. Visual tracking via adaptive structural local sparse appearance model[C] //2012 IEEE Conference on Computer Vision and Pattern Recognition, June 16-21, 2012, Providence, RI, USA, IEEE, 2012: 1822-1829. DOI: 10.1109/CVPR.2012.6247880. [16] KALAL Z, MIKOLAJCZYK K, MATAS J. Tracking-learning-detection[J]. IEEE Trans Pattern Anal Mach Intell, 2012, 34(7): 1409-1422. DOI: 10.1109/TPAMI.2011.239. [17] HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C] //2019 IEEE/CVF International Conference on Computer Vision(ICCV). October 27 - November 2, 2019, Seoul, Korea(South), IEEE, 2020: 1314-1324. DOI: 10.1109/ICCV.2019.00140. [18] HUANG R, PEDOEEM J, CHEN C X. YOLO-LITE: a real-time object detection algorithm optimized for non-GPU computers[C] //2018 IEEE International Conference on Big Data(Big Data), December 10-13, 2018, Seattle, WA, USA, IEEE, 2019: 2503-2510. DOI: 10.1109/BigData.2018.8621865. [19] ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C] //2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA, IEEE, 2018: 6848-6856. DOI: 10.1109/CVPR.2018.00716. [20] WU B C, DAI X L, ZHANG P Z, et al. FBNet: hardware-aware efficient ConvNet design via differentiable neural architecture search[C] //2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), June 15-20, 2019, Long Beach, CA, USA, IEEE, 2020: 10726-10734. DOI: 10.1109/CVPR.2019.01099. ( |