[1] CORTES C, VAPNIK V. Support-vector networks[J]. Mach Learn, 1995, 20(3): 273-297. DOI: 10.1007/ bf00994018. [2] SUBUDHIRAY S, PALO H K, DAS N. Effective recognition of facial emotions using dual transfer learned feature vectors and support vector machine[J]. Int J Inf Technol, 2023, 15(1): 301-313. DOI:10.1007/s41870-022-01093-7. [3] PANG J X, PU X K, LI C G. A hybrid algorithm incorporating vector quantization and one-class support vector machine for industrial anomaly detection[J]. IEEE Trans Ind Inform, 2022, 18(12): 8786-8796. DOI:10.1109/TII.2022.3145834. [4] YI L, XIE G J, LI Z H, et al. Automatic depression diagnosis through hybrid EEG and near-infrared spectroscopy features using support vector machine[J]. Front Neurosci, 2023, 17: 1205931. DOI:10.3389/fnins.2023.1205931. [5] MANGASARIAN O L, MUSICANT D R. Lagrangian support vector machines[J]. J Mach Learn Research, 2001, 1(Mar): 161-177. DOI:10.1162/15324430152748218. [6] SCHÖLKOPF B, SMOLA A J, WILLIAMSON R C, et al. New support vector algorithms[J]. Neural Comput, 2000, 12(5): 1207-1245. DOI:10.1162/089976600300015565. [7] LIN C F, WANG S D. Fuzzy support vector machines[J]. IEEE Trans Neural Netw, 2002, 13(2): 464-471. DOI:10.1109/72.991432. [8] JAYADEVA, KHEMCHANDANI R, CHANDRA S. Twin support vector machines for pattern classification[J]. IEEE Trans Pattern Anal Mach Intell, 2007, 29(5): 905-910. DOI:10.1109/ TPAMI. 2007.1068 [9] ARUN KUMAR M, GOPAL M. Least squares twin support vector machines for pattern classification[J]. Expert Syst Appl, 2009, 36(4): 7535-7543. DOI:10.1016/j.eswa.2008.09.066. [10] PENG X J. TPMSVM: a novel twin parametric-margin support vector machine for pattern recognition[J]. Pattern Recognit, 2011, 44(10/11): 2678-2692. DOI:10.1016/j.patcog.2011.03.031. [11] SHAO Y H, WANG Z, CHEN W J, et al. Least squares twin parametric-margin support vector machine for classification[J]. Appl Intell, 2013, 39(3): 451-464. DOI:10.1007/s10489-013-0423-y. [12] WANG H R, XU Y T, ZHOU Z J. Twin-parametric margin support vector machine with truncated pinball loss[J]. Neural Comput Appl, 2021, 33(8): 3781-3798. DOI:10.1007/s00521-020-05225-7. [13] RASTOGI NéE KHEMCHANDANI R, SAIGAL P, CHANDRA S. Angle-based twin parametric-margin support vector machine for pattern classification[J]. Knowl Based Syst, 2018, 139: 64-77. DOI:10.1016/j.knosys. 2017.10.008. [14] GUPTA D, BORAH P, PRASAD M. A fuzzy based Lagrangian twin parametric-margin support vector machine(FLTPMSVM)[C] //2017 IEEE Symposium Series on Computational Intelligence(SSCI), Honolulu, HI, USA. IEEE, 2017: 1-7. DOI:10.1109/SSCI.2017.8280964. [15] RICHHARIYA B, TANVEER M. Universum least squares twin parametric-margin support vector machine[C] //2020 International Joint Conference on Neural Networks(IJCNN), Glasgow, UK, IEEE, 2020: 1-8. DOI: 10.1109/IJCNN48605.2020.9206865. [16] TANVEER M, SHUBHAM K, ALDHAIFALLAH M, et al. An efficient regularized K-nearest neighbor based weighted twin support vector regression[J]. Knowl Based Syst, 2016, 94: 70-87. DOI: 10.1016/j.knosys.2015.11.011. [17] RICHHARIYA B, TANVEER M, FOR THE ALZHEIMER’S DISEASE NEUROIMAGING INITIATIVE. A fuzzy universum least squares twin support vector machine(FULSTSVM)[J]. Neural Comput Appl, 2022, 34(14): 11411-11422. DOI:10.1007/s00521-021-05721-4. [18] DUA D, TANISKIDOU E K. UCI machine learning repository, 2017[DB/OL].[2022-10-16]. http://archive. ics. uci. edu/ml/. [19] 刘小生, 章治邦.基于改进网格搜索法的SVM参数优化[J].江西理工大学学报, 2019, 40(1): 5-9. DOI: 10.13265/j.cnki.jxlgdxxb.2019.01.002. [20] BENAVOLI A, CORANI G, DEMSAR J, et al. Time for a change: a tutorial for comparing multiple classifiers through Bayesian analysis[J]. J Mach Learn Research, 2017, 18(77): 1-36. DOI:10. 48550/arXiv.1606.04316. ( |