[1] SUN Q, CHEN L P, GU X H, et al. Estimation of canopy nitrogen nutrient status in lodging maize using unmanned aerial vehicles hyperspectral data[J]. Ecol Inform, 2023, 78: 102315. DOI: 10.1016/j. ecoinf.2023.102315. [2] WANG Y, MA H B, WANG J Z, et al. Hyperspectral monitor of soil chromium contaminant based on deep learning network model in the Eastern Junggar coalfield[J]. Spectrochim Acta Part A Mol Biomol Spectrosc, 2021, 257: 119739. DOI: 10.1016/j.saa.2021. 119739. [3] SHU M Y, DONG Q Z, FEI S P, et al. Improved estimation of canopy water status in maize using UAV-based digital and hyperspectral images[J]. Comput Electron Agric, 2022, 197: 106982. DOI: 10.1016/j.compag.2022.106982. [4] 张俊,谭耀鑫,卢静静,等.基于深度学习的高光谱图像去噪综述[J].南昌工程学院学报, 2024, 43(3): 88-96. [5] WANG W X, LIU L M, ZHANG T X, et al. Hyper-ES2T: Efficient Spatial-Spectral Transformer for the classification of hyperspectral remote sensing images[J]. Int J Appl Earth Obs Geoinf, 2022, 113: 103005. DOI: 10.1016/j.jag.2022.103005. [6] SEIFI M, AHMADI A, NEYSHABOURI M R, et al. Remote and Vis-NIR spectra sensing potential for soil salinization estimation in the eastern coast of Urmia hyper saline lake, Iran[J]. Remote Sens Appl Soc Environ, 2020, 20: 100398. DOI: 10.1016/j.rsase.2020.100398. [7] 谭宏婕,邱昆峰,刘洪成,等.西秦岭李坝造山型金矿床围岩蚀变特征:基于高分五号02星(GF-5B)星载高光谱数据信息提取[J]. 岩石学报, 2024, 40(6): 1784-1800. DOI: 10. 18654/1000-0569/2024.06.06. [8] 张娟娟,牛圳,马新明,等.基于离散小波的土壤全氮高光谱特征提取与反演[J].光谱学与光谱分析, 2023, 43(10): 3223-3229. [9] 聂萍.基于高光谱的农作物遥感图像降维和分类[D].哈尔滨:黑龙江大学, 2024. DOI: 10.27123/d.cnki.ghlju.2024.000559. [10] 周峥,杨宇,张敢,等.基于自监督学习的高光谱图像降维算法[J].激光与光电子学进展, 2024, 61(12): 1237001. DOI: 10.3788/LOP231646. [11] 刘敬,李银桥,刘逸.主动学习联合聚类分组网络的高光谱遥感图像分类[J].光学 精密工程, 2024, 32(9): 1395-1407. [12] KAIB M T H, KOUADRI A, HARKAT M F, et al. Improving kernel PCA-based algorithm for fault detection in nonlinear industrial process through fractal dimension[J]. Process Saf Environ Prot, 2023, 179: 525-536. DOI: 10.1016/j.psep.2023.09.010. [13] WANG S H, ZHAN T M, CHEN Y, et al. Multiple sclerosis detection based on biorthogonal wavelet transform, RBF kernel principal component analysis, and logistic regression[J]. IEEE Access, 2017, 4: 7567-7576. [14] ATTOURI K, MANSOURI M, HAJJI M, et al. Improved fault detection based on kernel PCA for monitoring industrial applications[J]. J Process Contr, 2024, 133: 103143. DOI: 10.1016/j.jprocont.2023.103143. [15] REN Z L, JIANG Y C, YANG X B, et al. Learnable faster kernel-PCA for nonlinear fault detection: Deep autoencoder-based realization[J]. J Ind Inf Integr, 2024, 40: 100622. DOI: 10.1016/j.jii.2024.100622. [16] 王团辉,王超,李岳峰,等.基于KPCA-KNN算法的边坡稳定性预测[J].化工矿物与加工, 2023, 52(12): 52-58. DOI: 10.16283/j.cnki.hgkwyjg.2023.12.008. [17] KONG D D, CHEN Y J, LI N, et al. Tool wear monitoring based on kernel principal component analysis and v-support vector regression[J]. Int J Adv Manuf Technol, 2017, 89(1): 175-190. DOI: 10.1007/s00170-016-9070-x. [18] 王彩玲,张静,王洪伟,等.一种波段聚类和多尺度结构特征融合的高光谱图像分类模型[J]. 光谱学与光谱分析, 2024, 44(1): 258-265. DOI: 10.3964/j.issn.1000-0593(2024)01-0258-08. [19] 翟苏巍,李文云,周成,等.基于改进概率神经网络的储能电池荷电状态估计[J].智慧电力, 2024, 52(2): 94-100. [20] 黄赵军,苏建徽,解宝,等.基于模糊C均值聚类和概率神经网络的PEMFC故障诊断方法研究[J].太阳能学报, 2024, 45(1): 475-483. DOI: 10.19912/j.0254-0096.tynxb.2022-1480. [21] RUTKOWSKA D, DUDA P, CAO J, et al. The L2 convergence of stream data mining algorithms based on probabilistic neural networks[J]. Information Sciences, 2023, 631: 346-368. https://www.nstl.gov.cn/paper_detail.html?id=0e43d5c345d8d98f7d5c6172e0273543. [22] LI Q B, ZHONG J, DU J Q, et al. Probabilistic neural network-based flexible estimation of lithium-ion battery capacity considering multidimensional charging habits[J]. Energy, 2024, 294: 130881. DOI: 10.1016/j.energy.2024.130881. [23] EL-DABAA S A, METWALLI F I, AMIN A T, et al. Prediction of porosity and water saturation using a probabilistic neural network for the Bahariya Formation, Nader Field, north western desert, Egypt[J]. J Afr Earth Sci, 2022, 196: 104638. DOI: 10.1016/j.jafrearsci.2022.104638. [24] HOYA T. Reducing the number of centers in a probabilistic neural network via applying the first neighbor means clustering algorithm[J]. Array, 2022, 14: 100161. DOI: 10.1016/j.array.2022.100161. [25] MASUDUL ISLAM S, KUMAR V, KUMAR S, et al. Spectral mixture analysis of AVIRIS-NG hyperspectral data for material identification and classification for the part of Kolkata city[J]. Adv Space Res, 2024, 73(2): 1560-1572. DOI: 10.1016/j.asr.2022.12.044. [26] PALACIOS S L, THOMPSON D R, KUDELA R M, et al. Seasonal and Inter-Annual Patterns of Chlorophyll and Phytoplankton Community Structure in Monterey Bay, CA Derived from AVIRIS Data During the 2013-2015 HyspIRI Airborne Campaign[C] //American Geophysical Union, Ocean Sciences Meeting. 2016: abstract# EC34D-1215. [27] MONDAL S, GUHA A, KUMAR PAL S. Support vector machine-based integration of AVIRIS NG hyperspectral and ground geophysical data for identifying potential zones for chromite exploration-A study in Tamil Nadu, India[J]. Adv Space Res, 2024, 73(2): 1475-1490. DOI: 10.1016/j.asr.2022.04.048. [28] Hyperspectral Remote Sensing Scenes[EB/OL]. [2024-10-01]. https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes. ( |