[1] CHAN M, QIU K H, ZHAN P C, et al. Enhancement of NaSrVO4:Dy3+-white-phosphor photoluminescence via La3+ co-doping[J]. Ceram Int, 2019, 45(17):22547-22552. DOI:10.1016/j.ceramint.2019.07.282. [2] CHENG C, NING L X, KE X X, et al. Designing high-performance LED phosphors by controlling the phase stability via a Heterovalent substitution strategy[J]. Adv Opt Mater, 2020,8:1901608. DOI:10.1002/adom.201901608. [3] ZHOU J C, CHEN M T, ZHANG J X, et al. Regulating photoluminescence behavior by neighboring-cation-size in Sr8CaX(PO4)7:Eu2+(X=Al and Ga)phosphors for high color rendering solid-state lighting source[J]. Chem Eng J, 2021, 426:131869. DOI:10.1016/j.cej.2021.131869. [4] LIU D J, YUN X H, DANG P P, et al. Yellow/orange-emitting ABZn2Ga2O7:Bi3+(A=Ca,Sr;B=Ba, Sr)phosphors: optical temperature sensing and white light-emitting diode applications[J]. Chem Mater, 2020, 32(7):3065-3077. DOI:10.1021/acs.chemmater.0c00054. [5] REVATHY J S, RAJENDRAN DEEPTHI N. Temperature dependent photoluminescence studies of NUV excited Gd2O3:Eu phosphor[J]. Mater Today: Proc, 2021, 47(9):2007-2012. DOI:10.1016/j.matpr.2021.04.161. [6] KHAI SHENN L, ZAINURIAH H, WAY F L, et al. Synthesis and luminescence enhancement of red-emitting Ca3Y(AlO)3(BO3)4:Eu3+ phosphors via La3+ co-doping prepared by microwave solution combustion synthesis[J]. Mater Chem Phys, 2022, 293:126649. DOI: 10.1016/j.matchemphys.2022.126649. [7] 周红,高文海,张渤琦,等.稀土铕掺杂钒酸钇的荧光温度特性研究[J]. 长春理工大学学报(自然科学版), 2021, 44(1):7-13. DOI:10.3969/j.issn.1672-9870.2021.01.002. [8] PAVANI K, JAMALAIAH B C, NEVES A J, et al. Realization of sensible peak shift thermometry from multiple site occupied Eu3+ ions in magnetically frustrated SrGd2O4[J]. J Mater Sci, 2022, 57(18):8530-8543. DOI:10.1007/s10853-022-07034-w. [9] XIAO Q, DONG X Y, YIN X M, et al. Tunable multicolor upconversion luminescence of Yb3+ sensitized Na3La(VO4)2 crystals[J]. J Am Ceram Soc, 2020, 104(3):1415-1423. DOI:10.1111/jace.17548. [10] ZHOU J C, YAO Y, CHEN Y, et al. Synthesis, energy transfer mechanism, and tunable emissions of novel Na3La(VO4)2:Re3+(Re3+=Dy3+, Eu3+ and Sm3+)vanadate phosphors for near-UV-excited white LEDs[J]. Ceram Int, 2020, 46(5):6276-6283. DOI:10.1016/j.ceramint.2019.11.098. [11] LIU Y X, LIU G X, DONG X T, et al. Tunable photoluminescence and magnetic properties of Dy3+ and Eu3+ doped GdVO4 multifunctional phosphors[J]. Phys Chem Chem Phys, 2015, 17(40):26638-26644. DOI:10.1039/c5cp04373e. [12] CAO R P, WANG X T, JIAO Y M, et al. A single-phase NaCa2Mg2V3O12:Sm3+ phosphor: synthesis, energy transfer and luminescence properties[J]. J Lumin, 2019, 212:23-28. DOI:10.1016/j.jlumin.2019.04.017. [13] KACHOU I, SAIDI K, SALHI R, et al. Synthesis and optical spectroscopy of Na3Y(VO4)2:Eu3+ phosphors for thermometry and display applications[J]. RSC Adv, 2022, 12(12):7529-7539. DOI:10.1039/d2ra00539e. [14] XIE M L, HE C, FANG M H, et al. Improvement of luminescence performance of single-phase white-emitting Na3Gd(PO4)2:Dy3+ phosphor by co-doping with Eu3+[J]. Polyhedron, 2022:222. DOI:10.1016/j.poly.2022.115860. [15] WANG S Y, WANG T, ZHANG H B, et al. Eu3+ doped glass ceramics containing NaLa(MoO4)2 crystallite: Preparation, structure and luminescence properties[J]. J Lumin, 2020, 226:117420. DOI:10.1016/j.jlumin.2020.117420. [16] YANG P X, LI L, DENG Y S, et al. Realizing emission color tuning, ratiometric optical thermometry and temperature-induced redshift investigation in novel Eu3+-doped Ba3La(VO4)3 phosphors[J]. Dalton Trans, 2019, 48(29):10824-10833. DOI:10.1039/c9dt01917k. [17] 陈金润,李子璇,焦立鑫,等.Ba3(VO4)2:Sm3+荧光粉的熔盐法合成及其温度传感特性[J]. 功能材料, 2024, 55(2):02207-02214.DOI:10.3969/j.issn.1001-9731.2024.02.026. [18] XIE W, LIU G X, DONG X T, et al. Doping Eu3+/Sm3+ into CaWO4:Tm3+, Dy3+ phosphors and their luminescence properties, tunable color and energy transfer[J]. RSC Adv, 2016, 6(31):26239-26246. DOI: 10.1039/c6ra02594c. [19] BLASSE G. Energy transfer in oxidic phosphors[J]. Phys Lett A, 1968, 28(6):444-445. [20] VAN UNITERT L G. Characterization of energy transfer interactions between rare earth ions[J]. J Electrochem Soc, 1967, 114(10):1048-1053. [21] DEXTER DAVID L, SCHULMAN JAMES H. Theory of concentration quenching in inorganic phosphors[J]. J Chem Phys, 1954, 22(6):1063-1070. [22] LI J, SHI R X, CAO Y Q, et al. The synergism between self-activated and impurity-related emissions of LiCa3ZnV3O12: lattice distortion, energy transfer and temperature sensing effect[J]. RSC Adv, 2022, 12(55):36063-36071. DOI:10.1039/d2ra06647e. [23] CAO R P, WANG X T, JIAO Y M, et al. A single-phase NaCa2Mg2V3O12:Sm3+ phosphor: synthesis, energy transfer and luminescence properties[J]. J Lumin, 2019, 212:23-28. DOI:10.1016/j.jlumin.2019.04.017. [24] ZHANG L X, MENG Q Y, SUN W J, et al. Temperature-sensing characteristics of NaGd(MoO4)2:Sm3+, Tb3+ phosphors[J]. Ceram Int, 2021, 47(1):670-676. DOI:10.1016/j.ceramint.2020.08.175. [25] GE X F, FU Z L. Multiwavelength responsive luminescence for temperature sensing and visualized information encoding/decoding based on Er3+/Tb3+-doped Ba2Ga2GeO7 phosphors[J]. ACS Sustain Chem Eng, 2023, 11(16):6362-6372. DOI:10.1021/acssuschemeng.3c00207. [26] GU A H, PAN G H, WU H J, et al. Microstructure and photoluminescence of ZrTiO4:Eu3+ phosphors: host-sensitized energy transfer and optical thermometry[J]. Chemosensors, 2022, 10(12):527. DOI:10.3390/chemosensors10120527. [27] DU P, WU Y F, YU J S. Synthesis and luminescence properties of Eu3+-activated BiF3 nanoparticles for optical thermometry and fluorescence imaging in rice root[J]. RSC Adv, 2018, 8(12):6419-6424. DOI:10.1039/c8ra00107c. [28] HOU B F, JIA M C, LI P P, et al. Multifunctional optical thermometry based on the rare-earth-ions-doped up-/down-conversion Ba2TiGe2O8:Ln(Ln=Eu3+/Er3+/Ho3+/Yb3+)phosphors[J]. Inorg Chem, 2019, 58:7939-7946. DOI:10.1021/acs.inorgchem.9b00646. ( |