[1] 王建军, 刘文江, 石磊, 周世俊. 基于凸多项式模糊熵的图象阈值方法 [J]. 控制与决策 2000.doi:10.3321/j.issn:1001-0920.2000.03.031 [2] 吕印超, 郭嗣琮, LV Yinchao, GUO Sizong. 直觉模糊集的熵及其一般形式 [J]. 计算机工程与应用 2011.doi:10.3778/j.issn.1002-8331.2011.28.013 [3] SHANNON C. The Mathematical Theory of Communication [M]. Urbana:The University of Illinois Press 1949. [4] ZADEH L A. Fuzzy sets [J]. {H}Information and Control 1965, 8(03). [5] ZADEH L A. Probability measures of fuzzy events [J]. {H}Journal of Mathematical Analysis and Applications 1968, 23. [6] DE LUCA A, TERMINI S. A definition of non-probabilistic entropy in the setting of fuzzy set theory [J]. {H}Information and Control 1972, 20. [7] KAUFMANN A. Introduction to the Theory of Fuzzy Subsets [M]. {H}New York:Academic Press, Inc 1975. [8] YAGER R. On measures of fuzziness and negation Part I:Membership in the Unit Interval [J]. {H}International Journal of General Systems 1979, 5. [9] KOSKO B. Fuzzy entropy and conditioning [J]. {H}Information Sciences 1986, 40. [10] ATANASSOV K. Intuitionistic fuzzy sets [J]. {H}Fuzzy Sets and Systems 1986, 20. [11] BUTILLO P, BUSTINCE H. Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets [J]. {H}Fuzzy Sets and Systems 1996, 78(03). [12] Eulalia Szmidt, Janusz Kacprzyk. Entropy for intuitionistic fuzzy sets [J]. Fuzzy sets and systems 2001, 3(3). [13] Hung WL, Yang MS. Fuzzy entropy on intuitionistic fuzzy sets [J]. International journal of intelligent systems 2006, 4(4). [14] 吴涛, 白礼虎, 刘二宝. 直觉模糊集新的熵公式及应用 [J/OL]. http://www.cnki.net/kcms/detail/ll.2127 2012. |