[1] International Energy Agency. Globalized energy review: CO2 emiesions in 2021[R]. France: IEA, 2022:3-4. [2] 王勇.碳排放是能源可持续发展的最大挑战—《BP2023年世界能源展望》摘要[J].国际石油经济,2014,22(6):22-27. [3] KHADEMI A, EKSIOGLU S. Optimal governmental incentives for biomass cofiring to reduce emissions in the short-term[J]. IISE Trans, 2021, 53(8): 883-896. DOI: 10.1080/24725854.2020.1718247. [4] BIBERACHER M, TUM M, GÜNTHER K P, et al. Availability assessment of bioenergy and power plant location optimization: a case study for Pakistan[J]. Renew Sustain Energy Rev, 2015, 42: 700-711. DOI: 10.1016/j.rser.2014.10.036. [5] BOJIC S, MARTINOV M, BRCANOV D, et al. Location problem of lignocellulosic bioethanol plant - Case study of Serbia[J]. J Clean Prod, 2018, 172: 971-979. DOI: 10.1016/j.jclepro.2017.10.265. [6] JAYARATHNA L, KENT G, O’HARA I, et al. A Geographical Information System based framework to identify optimal location and size of biomass energy plants using single or multiple biomass types[J]. Appl Energy, 2020, 275: 115398. DOI: 10.1016/j.apenergy.2020.115398. [7] 刘喆轩,邱彤,陈丙珍.多期生物燃料供应链网络建模与多目标优化[J].化工学报, 2014, 65(7): 2802-2812. DOI: 10.3969/j.issn.0438-1157.2014.07.042. [8] MOHD IDRIS M N, HASHIM H, RAZAK N H. Spatial optimisation of oil palm biomass co-firing for emissions reduction in coal-fired power plant[J]. J Clean Prod, 2018, 172: 3428-3447. DOI: 10.1016/j.jclepro.2017.11.027. [9] MARTÍNEZ-GUIDO S I, RÍOS-BADRÁN I M, GUTIÉRREZ-ANTONIO C, et al. Strategic planning for the use of waste biomass pellets in Mexican power plants[J]. Renew Energy, 2019, 130: 622-632. DOI: 10.1016/j.renene.2018.06.084. [10] KARIMI H, EK?瘙塁IOG ˇLU S D, CARBAJALES-DALE M. A biobjective chance constrained optimization model to evaluate the economic and environmental impacts of biopower supply chains[J]. Ann Oper Res, 2021, 296(1): 95-130. DOI: 10.1007/s10479-019-03331-x. [11] AHMADVAND S, SOWLATI T. A bi-objective robust model for minimization of costs and emissions of syngas supply chain[J]. Comput Chem Eng, 2023, 179: 108404. DOI: 10.1016/j.compchemeng.2023.108404. [12] ARANGUREN M F, CASTILLO-VILLAR K K. Bi-objective stochastic model for the design of large-scale carbon footprint conscious co-firing biomass supply chains[J]. Comput Ind Eng, 2022, 171: 108352. DOI: 10.1016/j.cie.2022.108352. [13] NAYERI S, PAYDAR M M, ASADI-GANGRAJ E, et al. Multi-objective fuzzy robust optimization approach to sustainable closed-loop supply chain network design[J]. Comput Ind Eng, 2020, 148: 106716. DOI: 10.1016/j.cie.2020.106716. [14] ILBAHAR E, KAHRAMAN C, CEBI S. Location selection for waste-to-energy plants by using fuzzy linear programming[J]. Energy, 2021, 234: 121189. DOI: 10.1016/j.energy.2021.121189. [15] 刘彦奎,刘颖.鲁棒可信性优化的新进展[J].河北大学学报(自然科学版), 2021, 41(5): 457-462. DOI: 10.3969/j.issn.1000-1565.2021.05.002. [16] 白雪洁.应急物资预置问题的可信性优化模型[J].数学的实践与认识, 2017, 47(14): 267-276. DOI: CNKI:SOH:SSJS.0.017-14-029. [17] 刘颖,冯雪芹.能力导向下的模糊项目组合优化[J].河北大学学报(自然科学版), 2018, 38(4): 346-355. DOI: 10.3969/j.issn.1000-1565.2018.04.002. [18] CAMPBELL J E, LOBELL D B, FIELD C B. Greater transportation energy and GHG offsets from bioelectricity than ethanol[J]. Science, 2009, 324(5930): 1055-1057. DOI: 10.1126/science.1168885. [19] 刘彦奎.可信测度论:一种处理主观不确定性的方法[M].科学出版社, 2018. [20] SAGHAEI M, GHADERI H, SOLEIMANI H. Design and optimization of biomass electricity supply chain with uncertainty in material quality, availability and market demand[J]. Energy, 2020, 197: 117165. DOI: 10.1016/j.energy.2020.117165. [21] SUN R W, LIU T T, CHEN X D, et al. A biomass-coal co-firing based bi-level optimal approach for carbon emission reduction in China[J]. J Clean Prod, 2021, 278: 123318. DOI: 10.1016/j.jclepro.2020.123318. ( |