[1] STEPHAN B C M, SIERVO M, BRAYNE C. How can population-based studies best be utilized to reduce the global impact of dementia? Recommendations for researchers, funders, and policymakers[J]. Alzheimers Dement, 2020, 16(10): 1448-1456. DOI: 10.1002/alz.12127. [2] NERVO A, CALAS A G, NACHON F, et al. Respiratory failure triggered by cholinesterase inhibitors may involve activation of a reflex sensory pathway by acetylcholine spillover[J]. Toxicology, 2019, 424: 152232. DOI: 10.1016/j.tox.2019.06.003. [3] REID G A, CHILUKURI N, DARVESH S. Butyrylcholinesterase and the cholinergic system[J]. Neuroscience, 2013, 234: 53-68. DOI: 10.1016/j.neuroscience.2012.12.054. [4] HARTMANN J, KIEWERT C, DUYSEN E G, et al. Excessive hippocampal acetylcholine levels in acetylcholinesterase-deficient mice are moderated by butyrylcholinesterase activity[J]. J Neurochem, 2007, 100(5): 1421-1429. DOI: 10.1111/j.1471-4159.2006.04347. x. [5] REID G A, DARVESH S. Butyrylcholinesterase-knockout reduces brain deposition of fibrillar β-amyloid in an Alzheimer mouse model [J]. Neuroscience, 2015, 298: 424-435. DOI: 10.1016/j.neuroscience.2015.04.039. [6] SHARMA P, SRIVASTAVA P, SETH A, et al. Comprehensive review of mechanisms of pathogenesis involved in Alzheimer's disease and potential therapeutic strategies [J]. Progress in Neurobiology, 2019, 174: 53-89. DOI: 10.1016/j.pneurobio.2018.12.006. [7] WANG H, ZHANG H Y. Reconsideration of anticholinesterase therapeutic strategies against Alzheimer’s Disease[J]. ACS Chem Neurosci, 2019, 10(2): 852-862. DOI: 10.1021/acschemneuro.8b00391. [8] HAMPEL H, MESULAM M M, CUELLO A C, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer's disease[J]. Brain, 2018, 141(7): 1917-1933. DOI: 10.1093/brain/awy132. [9] KAMAL M A, KLEIN P, LUO W M, et al. Kinetics of human serum butyrylcholinesterase inhibition by a novel experimental Alzheimer therapeutic, dihydrobenzodioxepine cymserine[J]. Neurochem Res, 2008, 33(5): 745-753. DOI: 10.1007/s11064-007-9490-y. [10] MAJDI A, SADIGH-ETEGHAD S, RAHIGH AGHSAN S, et al. Amyloid-β, tau, and the cholinergic system in Alzheimer's disease: seeking direction in a tangle of clues[J]. Rev Neurosci,2020, 31(4): 391-413. DOI: 10.1515/revneuro-2019-0089. [11] KOŠAK U, BRUS B, KNEZ D, et al. Development of an in-vivo active reversible butyrylcholinesterase inhibitor[J]. Sci Rep, 2016, 6(1): 39495. DOI: 10.1038/srep39495. [12] RAHIM F, JAVED M T, ULLAH H, et al. Synthesis, molecular docking, acetylcholinesterase and butyrylcholinesterase inhibitory potential of thiazole analogs as new inhibitors for Alzheimer disease[J]. Bioorg Chem, 2015, 62: 106-116. DOI: 10.1016/j.bioorg.2015.08.002. [13] KHAN H, MARYA, AMIN S, et al. Flavonoids as acetylcholinesterase inhibitors: Current therapeutic standing and future prospects[J]. Biomedicine and Pharmacotherapy, 2018, 101: 860-870. DOI: 10.1016/j.biopha.2018.03.007. [14] SHI A D, HUANG L, LU C J, et al. Synthesis, biological evaluation and molecular modeling of novel triazole-containing berberine derivatives as acetylcholinesterase and β-amyloid aggregation inhibitors[J]. Bioorg Med Chem, 2011, 19(7): 2298-2305. DOI: 10.1016/j.bmc.2011.02.025. [15] SOLOMON V R, LEE H. Quinoline as a privileged scaffold in cancer drug discovery[J]. Curr Med Chem, 2011, 18(10): 1488-1508. DOI: 10.2174/092986711795328382. [16] JIN G F, XIAO F Y, LI Z W, et al. Design, synthesis, and dual evaluation of quinoline and quinolinium Iodide salt derivatives as potential anticancer and antibacterial agents[J]. ChemMedChem, 2020, 15(7): 600-609. DOI: 10.1002/cmdc.202000002. [17] ZHAO J W, WU Z H, GUO J W, et al. Synthesis and anti-gastric cancer activity evaluation of novel triazole nucleobase analogues containing steroidal/coumarin/quinoline moieties[J]. Eur J Med Chem, 2019, 181: 111520. DOI: 10.1016/j.ejmech.2019.07.023. [18] BEZERRA BELLEI J C, GLANZMANN N, CARPINTER B A, et al. A simple quinoline salt derivative is active in vitro against Plasmodiumfalciparum asexual blood stages and inhibits the development of cerebral malaria in murine model[J]. Chem Biol Interact, 2022, 355: 109848. DOI: 10.1016/j.cbi.2022.109848. [19] SANG Z P, PAN W L, WANG K R, et al. Design, synthesis and biological evaluation of 3, 4-dihydro-2(1H)-quinoline-O-alkylamine derivatives as new multipotent cholinesterase/monoamine oxidase inhibitors for the treatment of Alzheimer's disease[J]. Bioorg Med Chem, 2017, 25(12): 3006-3017. DOI: 10.1016/j.bmc.2017.03.070. [20] EGHTEDARI M, SARRAFI Y, NADRI H, et al. New tacrine-derived AChE/BuChE inhibitors: Synthesis and biological evaluation of 5-amino-2-phenyl-4H-pyrano [2, 3-b] quinoline-3-carboxylates[J]. Eur J Med Chem, 2017, 128: 237-246. DOI: 10.1016/j.ejmech.2017.01.042. [21] POURABDI L, KHOOBI M, NADRI H, et al. Synthesis and structure-activity relationship study of tacrine-based pyrano[2, 3-c] pyrazoles targeting AChE/BuChE and 15-LOX[J]. Eur J Med Chem, 2016, 123: 298-308. DOI: 10.1016/j.ejmech.2016.07.043. [22] MARIN D, TEIJEIRO C, DE L R. Electrochemical behaviour and micromolar determination of the antineoplastic agent azaribine and its mixtures with cytidine[J]. Journal of Electroanalytical Chemistry, 1997, 440(1-2): 95-102. DOI:10.1016/S0022-0728(97)80044-7. [23] CHÁVEZ-CASTILLO C E, MEDELLÍN-GARIBAY S E, MILÁN-SEGOVIA R D C, et al. Dosing recommendations based on population pharmacokinetics of lamotrigine in mexican adult patients with epilepsy[J]. J Pharm Sci, 2020, 109(9): 2902-2908. DOI: 10.1016/j.xphs.2020.05.030. [24] LI Q, LIU Y M, GUO X P, et al. Tirapazamine-loaded CalliSpheres microspheres enhance synergy between tirapazamine and embolization against liver cancer in an animal model[J]. Biomedicine Pharmacotherapy, 2022, 151: 113123. DOI: 10.1016/j.biopha.2022.113123. [25] YAZDANI M, EDRAKI N, BADRI R, et al. 5, 6-Diphenyl triazine-thio methyl triazole hybrid as a new Alzheimer’s disease modifying agents[J]. Mol Divers, 2020, 24(3): 641-654. DOI: 10.1007/s11030-019-09970-3. [26] SHI D H, HARJANI J R, GABLE R W, et al. Synthesis of 3-(Alkylamino)-, 3-(Alkoxy)-, 3-(Aryloxy)-, 3-(Alkylthio)-, and 3-(Arylthio)-1,2,4-triazines by Using a Unified Route with 3-(Methylsulfonyl)-1,2,4-triazine [J]. European Journal of Organic Chemistry, 2016, 2016(16): 2842-2850.DOI:10.1002/ejoc.201600267. [27] ELLMAN G L, COURTNEY K D, ANDRES V JR, et al. A new and rapid colorimetric determination of acetylcholinesterase activity[J]. Biochem Pharmacol, 1961, 7: 88-95. DOI: 10.1016/0006-2952(61)90145-9. [28] SHI D, MIN W, SONG M, et al. Synthesis, characterization, crystal structure and evaluation of four carbazole-coumarin hybrids as multifunctional agents for the treatment of Alzheimer’s disease[J]. Journal of Molecular Structure, 2020, 1209:127897. DOI: 10.1016/j.molstruc.2020.127897. [29] SHI D H, HUANG W, LI C, et al. Design, synthesis and molecular modeling of aloe-emodin derivatives as potent xanthine oxidase inhibitors[J]. Eur J Med Chem, 2014, 75: 289-296. DOI: 10.1016/j.ejmech.2014.01.058. [30] FENG Y Y, DONG C E, LI R, et al. Design, synthesis and biological evaluation of quinoline-1,2,4-triazinehybrids as antimalarial agents [J]. Journal of Molecular Structure, 2023, 1271:133982. DOI: 10.1016/j.molstruc.2022.133982. [31] NACHON F, CARLETTI E, RONCO C, et al. Crystal structures of human cholinesterases in complex with huprine W and tacrine: elements of specificity for anti- Alzheimer's drugs targeting acetyl- and butyryl-cholinesterase[J]. Biochem J, 2013, 453(3): 393-399. DOI: 10.1042/BJ20130013. [32] KNEZ D, BRUS B, COQUELLE N, et al. Structure-based development of nitroxoline derivatives as potential multifunctional anti-Alzheimer agents[J]. Bioorg Med Chem, 2015, 23(15): 4442-4452. DOI: 10.1016/j.bmc.2015.06.010. ( |