[1] 刘宗超,李哲轩,张阳,等.2020全球癌症统计报告解读[J].肿瘤综合治疗电子杂志, 2021, 7(2):1-14. DOI:10.12151/JMCM.2021.02-01. [2] RODRIGUEZ-DIAZ E, BAFFY G, LO W K,et al. Real-time artificial intelligence-based histological classification of colorectal polyps with augmented visualization - ScienceDirect[J].Gastrointestinal Endoscopy, 2020.DOI:10.1016/j.gie.2020.09.018. [3] DOUBENI C A, CORLEY D A, QUINN V P, et al. Effectiveness of screening colonoscopy in reducing the risk of death from right and left colon cancer: a large community-based study[J]. Gut, 2018, 67(2): 291-298. DOI: 10.1136/gutjnl-2016-312712. [4] REX D K, BOLAND C R, DOMINITZ J A, et al. Colorectal cancer screening: recommendations for physicians and patients from the U.S. Multi-Society Task Force on Colorectal Cancer[J]. Gastrointest Endosc, 2017, 86(1): 18-33. DOI: 10.1016/j.gie.2017.04.003. [5] ZHAO S B, WANG S L, PAN P, et al. Magnitude, risk factors, and factors associated with adenoma miss rate of tandem colonoscopy: a systematic review and meta-analysis[J]. Gastroenterology, 2019, 156(6): 1661-1674. DOI: 10.1053/j.gastro.2019.01.260. [6] LUI T K L, GUO C G, LEUNG W K. Accuracy of artificial intelligence on histology prediction and detection of colorectal polyps: a systematic review and meta-analysis[J]. Gastrointest Endosc, 2020, 92(1): 11-22. DOI: 10.1016/j.gie.2020.02.033. [7] BYRNE M F, SHAHIDI N, REX D K. Will computer-aided detection and diagnosis revolutionize colonoscopy?[J]. Gastroenterology, 2017, 153(6): 1460-1464. DOI: 10.1053/j.gastro.2017.10.026. [8] 蒋西然,蒋韬,孙嘉瑶,等.深度学习人工智能技术在医学影像辅助分析中的应用[J].中国医疗设备, 2021, 36(6): 164-171. DOI: 10.3969/j.issn.1674-1633.2021.06.040. [9] OZAWA T, ISHIHARA S, FUJISHIRO M, et al. Automated endoscopic detection and classification of colorectal polyps using convolutional neural networks[J]. Therap Adv Gastroenterol, 2020, 13: 1756284820910659. DOI: 10.1177/1756284820910659. [10] NOGUEIRA RODRÍGUEZ A, DOMÍNGUEZ CARBAJALES R, CAMPOS TATO F, et al. Real-time polyp detection model using convolutional neural networks[J]. Neural Comput Appl, 2021, 34(13): 1-22. [11] MO X, TAO K, WANG Q, et al. An efficient approach for polyps detection in endoscopic videos based on faster R-CNN[C] //2018 24th International Conference on Pattern Recognition(ICPR). Beijing, China. IEEE, 2018: 3929-3934. DOI: 10.1109/ICPR.2018.8545174. [12] PACAL I, KARABOGA D. A robust real-time deep learning based automatic polyp detection system[J]. Comput Biol Med, 2021, 134: 104519. DOI: 10.1016/j.compbiomed.2021.104519. [13] CAI H, FENG X, YIN R, et al. MIST: multiple instance learning network based on Swin Transformer for whole slide image classification of colorectal adenomas[J]. The Journal of Pathology, 2023, 259(2): 125-135. DOI: 10.1002/path.6027. [14] 张文明,姚振飞,高雅昆,等.一种平衡准确性以及高效性的显著性目标检测深度卷积网络模型[J].电子与信息学报, 2020, 42(5): 1201-1208. DOI: 10.11999/JEIT190229. [15] JIANG L, LI X.An efficient and accurate object detection algorithm and its application[J].IEEE, 2020.DOI:10.1109/ITOEC49072.2020.9141752. [16] ADARSH P, RATHI P, KUMAR M.YOLO v3-Tiny: object detection and recognition using one stage improved model[C] //2020 6th International Conference on Advanced Computing and Communication Systems(ICACCS).IEEE, 2020.DOI:10.1109/ICACCS48705.2020.9074315. [17] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. 2020: arXiv: 2004.10934. http://arxiv.org/abs/2004.10934. [18] ZHAOYANG N,GUOQIANG Z,HUI Y.A review on the attention mechanism of deep learning[J].Neurocomputing, 2021.DOI:10.1016/j.neucom.2021.03.091. 555/3295222.3295349. [19] LIU Z, MAO H Z, WU C Y, et al. A ConvNet for the 2020s[C] //2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). New Orleans, LA, USA. IEEE, 2022: 11966-11976. DOI: 10.1109/CVPR52688.2022.01167. [20] Yang L, Zhang R-Y, Li L, et al. SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks[C] //International Conference on Machine Learning. PMLR, 2021: 11863-11874. [21] LI H L, LI J, WEI H B, et al. Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles[EB/OL]. 2022: arXiv: 2206.02424. http://arxiv.org/abs/2206.02424. [22] GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression. 2022: arXiv: 2205.12740. http://arxiv.org/abs/2205.12740. [23] CHENG H, ANYUAN Y, HONGLIN H. 2021. Using combined Soft-NMS algorithm Method with Faster R-CNN model for Skin Lesion Detection. In Proceedings of the 6th International Conference on Robotics and Artificial Intelligence(ICRAI 20). Association for Computing Machinery, New York, NY, USA, 5–8. https://doi.org/10.1145/3449301.3449303. [24] BERNAL J, SÁNCHEZ F J, FERNÁNDEZ-ESPARRACH G, et al. WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians[J]. Comput Med Imaging Graph, 2015, 43: 99-111. DOI: 10.1016/j.compmedimag.2015.02.007. ( |