[1] BRAY F, LAVERSANNE M, WEIDERPASS E, et al.The ever-increasing importance of cancer as a leading cause of premature death worldwide[J].Cancer, 2021, 127(16):3029-3030.DOI.org/10.1002/cncr.33587. [2] 郑荣寿,张思维,孙可欣,等.2016年中国恶性肿瘤流行情况分析[J].中华肿瘤杂志, 2023, 45(3):212-220.DOI:10.3760/cma.j.cn112152-20220922-00647. [3] 石田蕾,张家意,鲍泳扬,等.基于深度学习的黑色素细胞病变全流程智能化精准诊断[J].生物医学工程学杂志, 2022,39(05):919-927.DOI:10.7507/1001-5515.202203080. [4] 陈颍锶,李晗,周雪婷,等.融合空洞卷积与注意力的胃癌组织切片分割[J].中国图象图形学报, 2021,26(09):2281-2292.DOI:10.11834/jig.200765. [5] 王继伟,樊伟,陈岗,等.基于深度卷积神经网络的数字病理辅助诊断系统设计[J].中国数字医学, 2020,15(12)48-52.DOI:10.3969/j.issn.1673-7571.2020.12.014. [6] ZHAO Y, ZHANG J, HU D, et al.Application of deep learning in histopathology images of breast cancer: a review[J]. Micromachines, 2022,13(12):2197. DOI: 10.3390/mi13122197. [7] 喻殿智,张欣,迟杏.基于CA-DenseNet的乳腺癌病理图像识别[J].国外电子测量技术,2022,41(05):137-143. DOI:10.19652/j.cnki.femt.2103531. [8] 杨昆,常世龙,王尉丞,等.基于sECANet通道注意力机制的肾透明细胞癌病理图像ISUP分级预测[J].电子与信息学报,2022,44(01):138-148. DOI: 10.11999/JEIT210900. [9] LI X, WANG Y, TANG Q, et al. Dual U-Net for the segmentation of overlapping glioma nuclei[J]. IEEE Access, Vol84040-84052,2019. DOI: 10.1109/ACCESS.2019.2924744. [10] BAYKAL E, DOAN H, EKINCI M, et al. An ensemble of fine-tuned fully convolutional neural networks for pleural effusion cell nuclei segmentation[J]. Computers and Electrical Engineering, 2019: 81. DOI: 10.1016/j.compeleceng.2019.106533. [11] 邓健志,支佩佩,张峰铭,等.结合拆分注意力特征融合的病理图像分割网络[J].科学技术与工程,2023,23(7):2922-2931. DOI: 10.3969/j. issn.1671-1815.2023.07.030. [12] ZHANG Y Y, LI Y Q, HE D Z. U-shaped network with multi-scale feature extraction for lesion region segmentation in gastric cancer images[C] //2023 IEEE 3rd International Conference on Information Technology, Big Data and Artificial Intelligence(ICIBA), Chongqing, China, 2023:234-238. DOI: 10.1109/ICIBA56860.2023.10165314. [13] WARIN K, LIMPRASERT W, SUEBNUKARN S, et al. Performance of deep convolutional neural network for classification and detection of oral potentially malignant disorders in photographic images[J]. International journal of oral and maxillofacial surgery, 2022, 51(5):699-704. DOI:10.1016/j.ijom.2021.09.001. [14] AZOUR F, BOUKERCHE A. An efficient transfer and ensemble learning based computer aided breast abnormality diagnosis system[J]. IEEE Access, vol. 11, 2023: 21199-21209. DOI: 10.1109/ACCESS.2022.3192857. [15] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [J]. 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Las Vegas, NV, USA, IEEE, 2016, 770-778. DOI:10.1109/CVPR.2016.90. [16] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[J]. arXiv preprint arXiv:1505.04597,2015. DOI.org/10.48550/arXiv.1505.04597. [17] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C] // Proceedings of the European conference on computer vision(ECCV). 2018: 3-19. DOI: 10.1007/978-3-030-01234-2_1. [18] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv preprint arXiv:1706.05587, 2017. DOI: 10.48550/ arXiv:1706.05587. [19] ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network [C] //Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 2881-2890. DOI: 10.1109/CVPR.2017.660. [20] CHEN J, LU Y, YU Q, et al. TransUNet: transformers make strong encoders for medical image segmentation[J]. arXiv preprint arXiv:2102.04306, 2021. DOI: 10.48550/arXiv.2102.04306. ( |