[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. DOI: 10.1126/science.1102896. [2] ZAVABETI A, AUKARASEREENONT P, TUOHEY H, et al. High-mobility p-type semiconducting two-dimensional β-TeO2[J]. Nat Electron, 2021, 4: 277-283. DOI: 10.1038/s41928-021-00606-9. [3] GUO S H, ZHANG Y Y, TANG S W, et al. Tuning interlayer spacing of MoS2 for enhanced hydrogen evolution reaction[J]. J Alloys Compd, 2021, 864: 158581. DOI: 10.1016/j.jallcom.2020.158581. [4] WANG B, IOCOZZIA J, ZHANG M, et al. The charge carrier dynamics, efficiency and stability of two-dimensional material-based perovskite solar cells[J]. Chem Soc Rev, 2019, 48(18): 4854-4891. DOI: 10.1039/c9cs00254e. [5] LIU B W, ZHANG Z, LIAO K, et al. Tuning optical properties of monolayer MoS2 through the 0D/2D interfacial effect with C60 nanoparticles[J]. Appl Surf Sci, 2020, 523: 146371. DOI: 10.1016/j.apsusc.2020.146371. [6] SATAWARA A M, SHAIKH G A, GUPTA S K, et al. An ab-initio analysis of the hydrogen storage behaviour of V doped Si2BN nanotube[J]. Int J Hydrog Energy, 2024, 52: 1560-1567. DOI: 10.1016/j.ijhydene.2023.10.166. [7] FENG P J, ZHANG S, LIU D P, et al. Achieving high-temperature ferromagnetism by means of magnetic ion dimerization in the graphene-like Mn2N6C6 monolayer[J]. J Phys Chem C, 2022, 126(24): 10139-10144. DOI: 10.1021/acs.jpcc.2c02593. [8] CHINNADURAI K, NATESAN B. Influence of main-group elements on structural, electronic, magnetic and half-metallic properties of DO3- type Mn3Z(Z=Al, Ga, In, Si, Ge, Sn, P, As and Sb)alloys-A DFT study[J]. Comput Condens Matter, 2024, 38: e00871. DOI: 10.1016/j.cocom.2023.e00871. [9] DEHGHAN A, DAVATOLHAGH S. First principles study of d0-d half-Heusler alloys containing group-IV, -V, and-VI sp atoms as prospective half-metals for real spintronic applications[J]. Mater Chem Phys, 2021, 273: 125064. DOI: 10.1016/j.matchemphys.2021.125064. [10] USMAN M, REHMAN J U, TAHIR M B. Screening of ABF3 fluoroperovskites by using first-principles calculations[J]. Solid State Commun, 2023, 369: 115198. DOI: 10.1016/j.ssc.2023.115198. [11] GAO B, ZHANG L. MX6C2H monolayers: the novel two-dimensional tunable Dirac cone materials family and quantum spin Hall insulators[J]. Solid State Commun, 2023, 372: 115314. DOI: 10.1016/j.ssc.2023.115314. [12] GUAN Y L, HAAS S, SCHLOMER H, et al. Plasmons in Z2 topological insulators[[J]. Phys Rev B, 2023, 107(15): 5414. DOI: 10.1103/PhysRevB.107.155414. [13] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B Condens Matter, 1996, 54(16): 11169-11186. DOI: 10.1103/physrevb.54.11169. [14] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865-3868. DOI: 10.1103/PhysRevLett.77.3865. [15] BLÖCHL P E. Projector augmented-wave method[J]. Phys Rev B Condens Matter, 1994, 50(24): 17953-17979. DOI: 10.1103/physrevb.50.17953. [16] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Phys Rev B, 1976, 13(12): 5188-5192. DOI: 10.1103/physrevb.13.5188. [17] HADJI S, BOUHEMADOU A, HADDADI K, et al. Elastic, electronic, optical and thermodynamic properties of Ba3Ca2Si2N6 semiconductor: first-principles predictions[J]. Phys B Condens Matter, 2020, 589: 412213. DOI: 10.1016/j.physb.2020.412213. [18] SINGH S, LANG L, DOVALE-FARELO V, et al. MechElastic: a Python library for analysis of mechanical and elastic properties of bulk and 2D materials[J]. Comput Phys Commun, 2021, 267: 108068. DOI: 10.1016/j.cpc.2021.108068. [19] VILLALOBOS-PORTILLO E E, FUENTES-MONTERO L, MONTERO-CABRERA M E, et al. Polycrystal piezoelectricity: revisiting the Voigt-Reuss-Hill approximation[J]. Mater Res Express, 2019, 6(11): 115705. DOI: 10.1088/2053-1591/ab46f2. [20] ZHAO Y H, DENG S J, LIU H, et al. First-principle investigation of pressure and temperature influence on structural, mechanical and thermodynamic properties of Ti3AC2(A=Al and Si)[J]. Comput Mater Sci, 2018, 154: 365-370. DOI: 10.1016/j.commatsci.2018.07.007. [21] QI W, CHEN B, YANG X, et al. Phase stability, mechanical and thermodynamic properties of(Hf, Zr, Ta, M)B2(M=Nb, Ti, Cr, W)quaternary high-entropy diboride ceramics via first-principles calculations[J]. Ceram Int, 2023, 49(20): 33255-33264. DOI: 10.1016/j.ceramint.2023.08.034. [22] SHAO L, JIANG H H, XU C R, et al. Prediction of lattice distortion and mechanical behavior of tetragonal phase(Bi0.2Na0.2Ba0.2Sr0.2Ca0.2)TiO3 high-entropy perovskite with A-site disorder from first-principles calculations[J]. J Alloys Compd, 2023, 954: 170205. DOI: 10.1016/j.jallcom.2023.170205. [23] GONG J J, LI Y, SONG X Q, et al. Hydrogen storage of high entropy alloy NbTiVZr and its effect on mechanical properties: a first-principles study[J]. Vacuum, 2024, 219: 112754. DOI: 10.1016/j.vacuum.2023.112754. [24] KHOEI A R, KIANEZHAD M. A machine learning-based atomistic-continuum multiscale technique for modeling the mechanical behavior of Ni3Al[J]. Int J Mech Sci, 2023, 239: 107858. DOI: 10.1016/j.ijmecsci.2022.107858. [25] ZHANG P X, YE L, CHEN F H, et al. Stability, mechanical, and thermodynamic behaviors of(TiZrHfTaM)C(M=Nb, Mo, W, V, Cr)high-entropy carbide ceramics[J]. J Alloys Compd, 2022, 903: 163868. DOI: 10.1016/j.jallcom.2022.163868. ( |