Journal of Hebei University(Natural Science Edition) ›› 2025, Vol. 45 ›› Issue (3): 254-265.DOI: 10.3969/j.issn.1000-1565.2025.03.004
WANG Jianguo1, XIE Jiaxin2, KONG Feiyan3, LI Yutong3, ZHAO Zhanjuan3
Received:
2024-08-21
Published:
2025-05-14
CLC Number:
WANG Jianguo, XIE Jiaxin, KONG Feiyan, LI Yutong, ZHAO Zhanjuan. Efficacy and mechanism of the combined application of photodynamic antibacterial therapy and antibiotic on drug-resistant bacterial infection[J]. Journal of Hebei University(Natural Science Edition), 2025, 45(3): 254-265.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xbzrb.hbu.edu.cn/EN/10.3969/j.issn.1000-1565.2025.03.004
[1] SOARES J M, GUIMARÃES F E G, YAKOVLEV V V, et al. Physicochemical mechanisms of bacterial response in the photodynamic potentiation of antibiotic effects[J]. Sci Rep, 2022,12(1): 21146. DOI: 10.1038/s41598-022-25546-y. [2] SATILMIS L, VANHEMS P, BÉNET T. Outbreaks of vancomycin-resistant enterococci in hospital settings: a systematic review and calculation of the basic reproductive number[J]. Infect Control Hosp Epidemiol, 2016, 37(3): 289-294. DOI:10.1017/ice.2015.301. [3] NASKAR A, KIM K S. Friends against the foe: synergistic photothermal and photodynamic therapy against bacterial infections[J]. Pharmaceutics, 2023, 15(4): 1116. DOI:10.3390/pharmaceutics15041116. [4] LO S W, HAWKINS P A, JIBIR B, et al. Molecular characterization of Streptococcus pneumoniae causing disease among children in Nigeria during the introduction of PCV10(GSK)[J]. Microb Genom, 2023, 9(9): 001094. DOI:10.1099/mgen.0.001094. [5] PRESTINACI F, PEZZOTTI P, PANTOSTI A. Antimicrobial resistance: a global multifaceted phenomenon[J]. Pathog Glob Health, 2015, 109(7): 309-318. DOI:10.1179/2047773215Y.0000000030. [6] 邢丽梅,王颖,邱海霞,等.亚苄基环戊酮介导的光动力对多重耐药铜绿假单胞菌的体外杀伤效应[J].中国激光医学杂志, 2019, 28(5): 241-245. DOI:10.13480/j.issn1003-9430.2019.0241. [7] HUANG L Y, DAI T H, HAMBLIN M R. Antimicrobial photodynamic inactivation and photodynamic therapy for infections[J]. Methods Mol Biol, 2010, 635: 155-173. DOI:10.1007/978-1-60761-697-9_12. [8] XIE J L, WANG Y W, CHOI W, et al. Overcoming barriers in photodynamic therapy harnessing nano-formulation strategies[J]. Chem Soc Rev, 2021, 50(16): 9152-9201. DOI:10.1039/d0cs01370f. [9] HAMBLIN M R. Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes[J]. Curr Opin Microbiol, 2016, 33: 67-73. DOI:10.1016/j.mib.2016.06.008. [10] AL-KHUREIF A A, MOHAMED B A, SIDDIQUI A Z, et al. Repeated application of photodynamic and antibiotic therapy as an adjunct to root surface debridement in patients with grade C and stage III or IV aggressive periodontitis[J]. Photodiagn Photodyn Ther, 2020, 29: 101610. DOI:10.1016/j.pdpdt.2019.101610. [11] JORI G, FABRIS C, SONCIN M, et al. Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications[J]. Lasers Surg Med, 2006, 38(5): 468-481. DOI:10.1002/lsm.20361. [12] SPERANDIO F F, HUANG Y Y, HAMBLIN M R. Antimicrobial photodynamic therapy to kill Gram-negative bacteria[J]. Recent Pat Antiinfect Drug Discov, 2013, 8(2): 108-120. DOI:10.2174/1574891x113089990012. [13] LIU Y, QIN R, ZAAT S A J, et al. Antibacterial photodynamic therapy: overview of a promising approach to fight antibiotic-resistant bacterial infections[J]. J Clin Transl Res, 2015, 1(3): 140-167. [14] DE A SANTOS D, CRUGEIRA P J L, NUNES I P F, et al. A novel technique of antimicrobial photodynamic therapy-aPDT using 1, 9-dimethyl-methylene blue zinc chloride double salt-DMMB and polarized light on Staphylococcus aureus[J]. J Photochem Photobiol B Biol, 2019, 200: 111646. DOI:10.1016/j.jphotobiol.2019.111646. [15] PÉREZ-LAGUNA V, PÉREZ-ARTIAGA L, LAMPAYA-PÉREZ V, et al. Bactericidal effect of photodynamic therapy, alone or in combination with mupirocin or linezolid, on Staphylococcus aureus[J]. Front Microbiol, 2017, 8: 1002. DOI:10.3389/fmicb.2017.01002. [16] WOZNIAK A, GRINHOLC M. Combined antimicrobial activity of photodynamic inactivation and antimicrobials-state of the art[J]. Front Microbiol, 2018, 9: 930. DOI:10.3389/fmicb.2018.00930. [17] DE OLIVEIRA D M P, FORDE B M, KIDD T J, et al. Antimicrobial resistance in ESKAPE pathogens[J]. Clin Microbiol Rev, 2020, 33(3): e00181-19. DOI:10.1128/CMR.00181-19. [18] SANTAJIT S, INDRAWATTANA N. Mechanisms of antimicrobial resistance in ESKAPE pathogens[J]. Biomed Res Int, 2016, 2016: 2475067. DOI:10.1155/2016/2475067. [19] KATO H, KOMAGOE K, NAKANISHI Y, et al. Xanthene dyes induce membrane permeabilization of bacteria and erythrocytes by photoinactivation[J]. Photochem Photobiol, 2012, 88(2): 423-431. DOI:10.1111/j.1751-1097.2012.01080.x. [20] BARRA F, ROSCETTO E, SORIANO A A, et al. Photodynamic and antibiotic therapy in combination to fight biofilms and resistant surface bacterial infections[J]. Int J Mol Sci, 2015, 16(9): 20417-20430. DOI:10.3390/ijms160920417. [21] SORIA-LOZANO P, GILABERTE Y, PAZ-CRISTOBAL M P, et al. In vitro effect photodynamic therapy with differents photosensitizers on cariogenic microorganisms[J]. BMC Microbiol, 2015, 15: 187. DOI:10.1186/s12866-015-0524-3. [22] DI POTO A, SBARRA M S, PROVENZA G, et al. The effect of photodynamic treatment combined with antibiotic action or host defence mechanisms on Staphylococcus aureus biofilms[J]. Biomaterials, 2009, 30(18): 3158-3166. DOI:10.1016/j.biomaterials.2009.02.038. [23] LEBRETON F, VAN SCHAIK W, MCGUIRE A M, et al. Emergence of epidemic multidrug-resistant Enterococcus faecium from animal and commensal strains[J]. mBio, 2013, 4(4): e00534. DOI:10.1128/mBio.00534-13. [24] MURRAY B E. The life and times of the enterococcus[J]. Clin Microbiol Rev, 1990, 3(1): 46-65. DOI:10.1128/CMR.3.1.46. [25] PRASAD P, SUN J F, DANNER R L, et al. Excess deaths associated with tigecycline after approval based on noninferiority trials[J]. Clin Infect Dis, 2012, 54(12): 1699-1709. DOI:10.1093/cid/cis270. [26] CHIANG H Y, PERENCEVICH E N, NAIR R, et al. Incidence and outcomes associated with infections caused by vancomycin-resistant enterococci in the United States: systematic literature review and meta-analysis[J]. Infect Control Hosp Epidemiol, 2017, 38(2): 203-215. DOI:10.1017/ice.2016.254. [27] WILLIS J A, CHEBURKANOV V, CHEN S R, et al. Breaking down antibiotic resistance in methicillin-resistant Staphylococcus aureus: Combining antimicrobial photodynamic and antibiotic treatments[J]. Proc Natl Acad Sci USA, 2022, 119(36): e2208378119. DOI:10.1073/pnas.2208378119. [28] OTTO M. MRSA virulence and spread[J]. Cell Microbiol, 2012, 14(10): 1513-1521. DOI:10.1111/j.1462-5822.2012.01832.x. [29] HODILLE E, ROSE W, DIEP B A, et al. The role of antibiotics in modulating virulence in Staphylococcus aureus[J]. Clin Microbiol Rev, 2017, 30(4): 887-917. DOI:10.1128/CMR.00120-16. [30] 潘伟,李志远,张韬,等.基于二氢卟吩e6的光动力疗法联合替硝唑对牙周炎大鼠协同治疗作用的研究[J].中华口腔医学杂志, 2021, 56(10): 1011-1019. DOI:10.3760/cma.j.cn112144-20201125-00587. [31] VASSENA C, FENU S, GIULIANI F, et al. Photodynamic antibacterial and antibiofilm activity of RLP068/Cl against Staphylococcus aureus and Pseudomonas aeruginosa forming biofilms on prosthetic material[J]. Int J Antimicrob Agents, 2014, 44(1): 47-55. DOI:10.1016/j.ijantimicag.2014.03.012. [32] 庞家胤,和亚雄,郑梦雪,等.光动力抗菌疗法对多重耐药铜绿假单胞菌体外杀伤作用的研究[J].第三军医大学学报, 2021, 43(7): 599-605. DOI:10.16016/j.1000-5404.202012135. [33] DAHSHAN N A, ABU-DAHAB R, KHALIL E A, et al. Bactericidal effect of Iberin combined with photodynamic antimicrobial chemotherapy against Pseudomonas aeruginosa biofilm cultured on ex vivo wound model[J]. Photodiagn Photodyn Ther, 2023, 44: 103841. DOI:10.1016/j.pdpdt.2023.103841. [34] FENG Y F, CORADI TONON C, ASHRAF S, et al. Photodynamic and antibiotic therapy in combination against bacterial infections: efficacy, determinants, mechanisms, and future perspectives[J]. Adv Drug Deliv Rev, 2021, 177: 113941. DOI:10.1016/j.addr.2021.113941. [35] TACCONELLI E, CARRARA E, SAVOLDI A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis[J]. Lancet Infect Dis, 2018, 18(3): 318-327. DOI:10.1016/S1473-3099(17)30753-3. [36] 张琦,刘亚婕,闫文娟,等.碳青霉烯类耐药肠杆菌目细菌对头孢他啶/阿维巴坦的耐药率及耐药机制研究[J].中国合理用药探索, 2022, 19(8): 37-47. DOI:10.3969/j.issn.2096-3327.2022.08.006. [37] GOMEZ-SIMMONDS A, ANNAVAJHALA M K, WANG Z, et al. Genomic and geographic context for the evolution of high-risk carbapenem-resistant Enterobacter cloacae complex clones ST171 and ST78[J]. mBio, 2018, 9(3): e00542-18. DOI:10.1128/mBio.00542-18. [38] SADER H S, BIEDENBACH D J, JONES R N. Global patterns of susceptibility for 21 commonly utilized antimicrobial agents tested against 48, 440 Enterobacteriaceae in the SENTRY Antimicrobial Surveillance Program(1997-2001)[J]. Diagn Microbiol Infect Dis, 2003, 47(1): 361-364. DOI:10.1016/S0732-8893(03)00052-X. [39] THIOLAS A, BOLLET C, SCOLA B L, et al. Successive emergence of Enterobacter aerogenes strains resistant to imipenem and colistin in a patient[J]. Antimicrob Agents Chemother, 2005, 49(4): 1354-1358. DOI:10.1128/AAC.49.4.1354-1358.2005. [40] GOMEZ-SIMMONDS A, ANNAVAJHALA M K, WANG Z, et al. Genomic and geographic context for the evolution of high-risk carbapenem-resistant Enterobacter cloacae complex clones ST171 and ST78[J]. mBio, 2018, 9(3): e00542-18. DOI:10.1128/mBio.00542-18. [41] SADER H S, BIEDENBACH D J, JONES R N. Global patterns of susceptibility for 21 commonly utilized antimicrobial agents tested against 48, 440 Enterobacteriaceae in the SENTRY Antimicrobial Surveillance Program(1997-2001)[J]. Diagn Microbiol Infect Dis, 2003, 47(1): 361-364. DOI:10.1016/S0732-8893(03)00052-X. [42] YIGIT H, QUEENAN A M, ANDERSON G J, et al. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae[J]. Antimicrob Agents Chemother, 2001, 45(4): 1151-1161. DOI:10.1128/AAC.45.4.1151-1161.2001. [43] BAND V I, CRISPELL E K, NAPIER B A, et al. Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae[J]. Nat Microbiol, 2016, 1(6): 16053. DOI:10.1038/nmicrobiol.2016.53. [44] KRAPP F, MORRIS A R, OZER E A, et al. Virulence characteristics of carbapenem-resistant klebsiella pneumoniae strains from patients with necrotizing skin and soft tissue infections[J]. Sci Rep, 2017, 7(1): 13533. DOI:10.1038/s41598-017-13524-8. [45] PATERSON D L, BONOMO R A. Extended-spectrum beta-lactamases: a clinical update[J]. Clin Microbiol Rev, 2005, 18(4): 657-686. DOI:10.1128/CMR.18.4.657-686.2005. [46] IBRAHIM M E. Prevalence of acinetobacter baumannii in Saudi Arabia: risk factors, antimicrobial resistance patterns and mechanisms of carbapenem resistance[J]. Ann Clin Microbiol Antimicrob, 2019, 18(1): 1. DOI:10.1186/s12941-018-0301-x. [47] WEI D D, WAN L G, DENG Q, et al. Emergence of KPC-producing Klebsiella pneumoniae hypervirulent clone of capsular serotype K1 that belongs to sequence type 11 in Mainland China[J]. Diagn Microbiol Infect Dis, 2016, 85(2): 192-194. DOI:10.1016/j.diagmicrobio.2015.03.012. [48] LOB S H, HOBAN D J, SAHM D F, et al. Regional differences and trends in antimicrobial susceptibility of Acinetobacter baumannii[J]. Int J Antimicrob Agents, 2016, 47(4): 317-323. DOI:10.1016/j.ijantimicag.2016.01.015. [49] XIE R Q, ZHANG X D, ZHAO Q, et al. Analysis of global prevalence of antibiotic resistance in Acinetobacter baumannii infections disclosed a faster increase in OECD countries[J]. Emerg Microbes Infect, 2018, 7(1): 31. DOI:10.1038/s41426-018-0038-9. [50] QURESHI Z A, HITTLE L E, O’HARA J A, et al. Colistin-resistant acinetobacter baumannii: beyond carbapenem resistance[J]. Clin Infect Dis, 2015, 60(9): 1295-1303. DOI:10.1093/cid/civ048. [51] MUNOZ-PRICE L S, WEINSTEIN R A. Acinetobacter infection[J]. N Engl J Med, 2008, 358(12): 1271-1281. DOI:10.1056/nejmra070741. [52] JIANG J G, LV X Y, CHENG H J, et al. Type I photodynamic antimicrobial therapy: Principles, progress, and future perspectives[J]. Acta Biomater, 2024, 177: 1-19. DOI:10.1016/j.actbio.2024.02.005. [53] ZHANG M M, CUI Z X, WANG Y L, et al. Effects of sub-lethal antimicrobial photodynamic therapy mediated by haematoporphyrin monomethyl ether on polymyxin-resistant Escherichia coli clinical isolate[J]. Photodiagn Photodyn Ther, 2021, 36: 102516. DOI:10.1016/j.pdpdt.2021.102516. [54] ZHANG Q Z, ZHAO K Q, WU Y, et al. 5-aminolevulinic acid-mediated photodynamic therapy and its strain-dependent combined effect with antibiotics on Staphylococcus aureus biofilm[J]. PLoS One, 2017, 12(3): e0174627. DOI:10.1371/journal.pone.0174627. [55] SAVELYEVA I O, ZHDANOVA K A, GRADOVA M A, et al. Cationic porphyrins as antimicrobial and antiviral agents in photodynamic therapy[J]. Curr Issues Mol Biol, 2023, 45(12): 9793-9822. DOI:10.3390/cimb45120612. [56] XU X H, ZHENG Y, ZHAO Z G, et al. Efficacy of photodynamic therapy combined with minocycline for treatment of moderate to severe facial acne vulgaris and influence on quality of life[J]. Medicine, 2017, 96(51): e9366. DOI:10.1097/MD.0000000000009366. [57] XING B G, JIANG T T, BI W G, et al. Multifunctional divalent vancomycin: the fluorescent imaging and photodynamic antimicrobial properties for drug resistant bacteria[J]. Chem Commun, 2011, 47(5): 1601-1603. DOI:10.1039/c0cc04434b. [58] ALMEIDA J, TOMÉ J P C, NEVES M G P M S, et al. Photodynamic inactivation of multidrug-resistant bacteria in hospital wastewaters: influence of residual antibiotics[J]. Photochem Photobiol Sci, 2014, 13(4): 626-633. DOI:10.1039/C3PP50195G. [59] BRANCO T M, VALÉRIO N C, JESUS V I R, et al. Single and combined effects of photodynamic therapy and antibiotics to inactivate Staphylococcus aureus on skin[J]. Photodiagn Photodyn Ther, 2018, 21: 285-293. DOI:10.1016/j.pdpdt.2018.01.001. [60] OPENDA Y I, NYOKONG T. Combination of photodynamic antimicrobial chemotherapy and ciprofloxacin to combat S. aureus and E. coli resistant biofilms[J]. Photodiagn Photodyn Ther, 2023, 42: 103142. DOI:10.1016/j.pdpdt.2022.103142. [61] ILUZ N, MAOR Y, KELLER N, et al. The synergistic effect of PDT and oxacillin on clinical isolates of Staphylococcus aureus[J]. Lasers Surg Med, 2018, 50(5): 535-551. DOI:10.1002/lsm.22785. [62] DASTGHEYB S S, ECKMANN D M, COMPOSTO R J, et al. Photo-activated porphyrin in combination with antibiotics: therapies against Staphylococci[J]. J Photochem Photobiol B, 2013, 129: 27-35. DOI:10.1016/j.jphotobiol.2013.09.006. [63] CASSIDY C M, DONNELLY R F, TUNNEY M M. Effect of sub-lethal challenge with Photodynamic Antimicrobial Chemotherapy(PACT)on the antibiotic susceptibility of clinical bacterial isolates[J]. J Photochem Photobiol B Biol, 2010, 99(1): 62-66. DOI:10.1016/j.jphotobiol.2010.02.004. [64] ZHAO Z J, MA J D, WANG Y Y, et al. Antimicrobial photodynamic therapy combined with antibiotic in the treatment of rats with third-degree burns[J]. Front Microbiol, 2021, 12: 622410. DOI:10.3389/fmicb.2021.622410. [65] 尹秀娟.光动力抗菌化学疗法联合抗生素治疗兔胫骨骨髓炎的实验研究[D]. 保定:河北大学, 2022. DOI:10.27103/d.cnki.ghebu.2022.001905. [66] MISBA L, ZAIDI S, KHAN A U. A comparison of antibacterial and antibiofilm efficacy of phenothiazinium dyes between Gram positive and Gram negative bacterial biofilm[J]. Photodiagn Photodyn Ther, 2017, 18: 24-33. DOI:10.1016/j.pdpdt.2017.01.177. [67] FENG Y F, TONON C C, HASAN T. Dramatic destruction of methicillin-resistant Staphylococcus aureus infections with a simple combination of amoxicillin and light-activated methylene blue[J]. J Photochem Photobiol B Biol, 2022, 235: 112563. DOI:10.1016/j.jphotobiol.2022.112563. [68] LIU X, LIU S P, MAI B J, et al. Synergistic gentamicin-photodynamic therapy against resistant bacteria in burn wound infections[J]. Photodiagn Photodyn Ther, 2022, 39: 103034. DOI:10.1016/j.pdpdt.2022.103034. [69] BOLUKI E, KAZEMIAN H, PEERIDOGAHEH H, et al. Antimicrobial activity of photodynamic therapy in combination with colistin against a pan-drug resistant Acinetobacter baumannii isolated from burn patient[J]. Photodiagn Photodyn Ther, 2017, 18: 1-5. DOI:10.1016/j.pdpdt.2017.01.003. [70] ARENAS Y, MONRO S, SHI G, et al. Photodynamic inactivation of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus with Ru(II)-based type I/type II photosensitizers[J]. Photodiagn Photodyn Ther, 2013, 10(4): 615-625. DOI:10.1016/j.pdpdt.2013.07.001. [71] LIU S P, MAI B J, JIA M Q, et al. Synergistic antimicrobial effects of photodynamic antimicrobial chemotherapy and gentamicin on Staphylococcus aureus and multidrug-resistant Staphylococcus aureus[J]. Photodiagn Photodyn Ther, 2020, 30: 101703. DOI:10.1016/j.pdpdt.2020.101703. [72] KASHEF N, AKBARIZARE M, RAZZAGHI M R. In vitro activity of linezolid in combination with photodynamic inactivation against Staphylococcus aureus biofilms[J]. Avicenna J Med Biotechnol, 2017, 9(1): 44-48. [73] CASSIDY C M, DONNELLY R F, ELBORN J S, et al. Photodynamic Antimicrobial Chemotherapy(PACT)in combination with antibiotics for treatment of Burkholderia cepacia complex infection[J]. J Photochem Photobiol B Biol, 2012, 106: 95-100. DOI:10.1016/j.jphotobiol.2011.10.010. [74] CHIBEBE JUNIOR J, FUCHS B B, SABINO C P, et al. Photodynamic and antibiotic therapy impair the pathogenesis of Enterococcus faecium in a whole animal insect model[J]. PLoS One, 2013, 8(2): e55926. DOI:10.1371/journal.pone.0055926. [75] TANAKA M, MROZ P, DAI T H, et al. Linezolid and vancomycin decrease the therapeutic effect of methylene blue-photodynamic therapy in a mouse model of MRSA bacterial arthritis[J]. Photochem Photobiol, 2013, 89(3): 679-682. DOI:10.1111/php.12040. [76] PÉREZ-LAGUNA V, GARCíA-LUQUE I, BALLESTA S, et al. Photodynamic therapy using methylene blue, combined or not with gentamicin, against Staphylococcus aureus and Pseudomonas aeruginosa[J]. Photodiagn Photodyn Ther, 2020, 31: 101810. DOI:10.1016/j.pdpdt.2020.101810. [77] UCUNCU M, MILLS B, DUNCAN S, et al. Polymyxin-based photosensitizer for the potent and selective killing of Gram-negative bacteria[J]. Chem Commun, 2020, 56(26): 3757-3760. DOI:10.1039/d0cc00155d. [78] RONQUI M R, DE AGUIAR COLETTI T M S F, DE FREITAS L M, et al. Synergistic antimicrobial effect of photodynamic therapy and ciprofloxacin[J]. J Photochem Photobiol B, 2016, 158: 122-129. DOI:10.1016/j.jphotobiol.2016.02.036. [79] SHIH M H, HUANG F C. Effects of photodynamic therapy on rapidly growing nontuberculous mycobacteria keratitis[J]. Invest Ophthalmol Vis Sci, 2011, 52(1): 223-229. DOI:10.1167/iovs.10-5593. [80] CAHAN R, SWISSA N, GELLERMAN G, et al. Photosensitizer-antibiotic conjugates: a novel class of antibacterial molecules[J]. Photochem Photobiol, 2010, 86(2): 418-425. DOI:10.1111/j.1751-1097.2009.00674.x. [81] HUANG L Y, WANG M, HUANG Y Y, et al. Progressive cationic functionalization of chlorin derivatives for antimicrobial photodynamic inactivation and related vancomycin conjugates[J]. Photochem Photobiol Sci, 2018, 17(5): 638-651. DOI:10.1039/C7PP00389G. [82] GAO H Z, YANG K W, WU X L, et al. Novel conjugation of norvancomycin-fluorescein for photodynamic inactivation of Bacillus subtilis[J]. Bioconjug Chem, 2011, 22(11): 2217-2221. DOI:10.1021/bc200382d. [83] FILA G, KAWIAK A, GRINHOLC M S. Blue light treatment of Pseudomonas aeruginosa: strong bactericidal activity, synergism with antibiotics and inactivation of virulence factors[J]. Virulence, 2017, 8(6): 938-958. DOI:10.1080/21505594.2016.1250995. [84] REZNICK Y, BANIN E, LIPOVSKY A, et al. The synergistic effect of visible light and gentamycin on Pseudomona aeruginosa microorganisms[J]. J Vis Exp, 2013(77): e4370. DOI:10.3791/4370. [85] NAJARI E, ZAMANI S, SHEIKH ARABI M, et al. Antimicrobial photodynamic effect of the photosensitizer riboflavin, alone and in combination with colistin, against pandrug-resistant Pseudomonas aeruginosa clinical isolates[J]. J Infect Chemother, 2024, 30(9): 892-898. DOI:10.1016/j.jiac.2024.03.001. [86] MILLS B, KIANG A, MOHANAN S M P C, et al. Riboflavin-vancomycin conjugate enables simultaneous antibiotic photo-release and photodynamic killing against resistant gram-positive pathogens[J]. JACS Au, 2023, 3(11): 3014-3023. DOI:10.1021/jacsau.3c00369 [87] LE GUERN F, OUK T S, GRENIER K, et al. Enhancement of photobactericidal activity of chlorin-e6-cellulose nanocrystals by covalent attachment of polymyxin B[J]. J Mater Chem B, 2017, 5(33): 6953-6962. DOI:10.1039/C7TB01274H. [88] AL-SARRAJ F. The effect of antibiotics and photodynamic therapy on extended-spectrum beta-lactamase(ESBL)positive of Escherichia coli and Klebsiella pneumoniae in urothelial cells[J]. Saudi J Biol Sci, 2021, 28(10): 5561-5567. DOI:10.1016/j.sjbs.2021.05.074. ( |
[1] | ZHAO Jianxi, PANG Jingwen, TIAN Xiang, YAN Xinghan, ZHANG Zhiming, ZHAO Zhanjuan. Application and mechanism of photodynamic therapy in the treatment of diabetic foot [J]. Journal of Hebei University(Natural Science Edition), 2023, 43(2): 188-196. |
[2] | ZHANG Xinying, HAN Ying, WANG Yamei, DU Fengqin, ZHANG Jin, CAO Songyun. Analysis of the correlation between drug resistance of Pseudomonas aeruginosa and antibiotics use density [J]. Journal of Hebei University(Natural Science Edition), 2021, 41(2): 188-194. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||