[1] 朱大奇,胡震.深海潜水器研究现状与展望[J].安徽师范大学学报(自然科学版), 2018, 41(3): 205-216. DOI: 10.14182/J.cnki.1001-2443.2018.03.001. [2] 丁忠军,任玉刚,张奕,等.深海探测技术研发和展望[J].海洋开发与管理, 2019, 36(4): 71-77. DOI: 10.3969/j.issn.1005-9857.2019.04.016. [3] 吴有生,赵羿羽,郎舒妍,等.智能无人潜水器技术发展研究[J].中国工程科学, 2020, 22(6): 26-31. DOI: 10.15302/J-SSCAE-2020.06.004. [4] 张波波,Dongphil Chun,代学冬.国内外水下机器人研究前沿动态追踪:基于CiteSpace可视化分析[J].科学技术创新, 2023(24): 13-17. DOI: 10.3969/j.issn.1673-1328.2023.24.005. [5] 周吉祥,刘慧敏,陆凯,等.深海ARV在海洋资源调查中的应用及展望[J].海洋地质前沿, 2024, 40(2): 93-102. DOI: 10.16028/j.1009-2722.2023.005. [6] 黄琰,李岩,俞建成,等.AUV智能化现状与发展趋势[J].机器人, 2020(2): 215-231. DOI: 10.13973/j.cnki.robot.190392. [7] 宋俊辉,严允,罗凌波,等.人工智能在深海机器人领域的应用研究[J].电子世界, 2019(6): 185-186. DOI: 10.19353/j.cnki.dzsj.2019.06.100. [8] 汪顺亭,汪湛清.水下运载体导航技术[J].导航与控制, 2020, 19(4): 1-14. DOI: 10.3969/j.issn.1674-5558.2020.h4.001. [9] 范刚,张亚,赵河明,等.水下机器人定位导航技术发展现状与分析[J].兵器装备工程学报, 2022, 43(3): 22-29. DOI: 10.11809/bqzbgcxb2022.03.003. [10] ZHANG B B, JI D X, LIU S, et al. Autonomous Underwater Vehicle navigation: a review[J]. Ocean Eng, 2023, 273: 113861. DOI: 10.1016/j.oceaneng.2023.113861. [11] 李昱,王俊雄.基于卷积神经网络的AUV水下识别算法设计与实现[J].舰船科学技术, 2021, 43(7): 155-158. DOI: 10.3404/j.issn.1672-7649.2021.04.031. [12] NIU H Q, GONG Z X, OZANICH E, et al. Deep-learning source localization using multi-frequency magnitude-only data[J]. J Acoust Soc Am, 2019, 146(1): 211. DOI: 10.1121/1.5116016. [13] 徐凤强,董鹏,王辉兵,等.基于水下机器人的海产品智能检测与自主抓取系统[J].北京航空航天大学学报, 2019, 45(12): 2393-2402. DOI: 10.13700/j.bh.1001-5965.2019.0377. [14] HOU G C, SHAO Q, ZOU B, et al. A novel underwater simultaneous localization and mapping online algorithm based on neural network[J]. ISPRS Int J Geo Inf, 2019, 9(1): 5. DOI: 10.3390/ijgi9010005. [15] CARLUCHO I, BAILEY M F, DE PAULA M, et al. Marine vehicles localization using grid cells for path integration[C] //OCEANS 2021: San Diego-Porto. San Diego, CA, USA. IEEE, 2021: 1-6. DOI: 10.23919/OCEANS44145.2021.9706050. [16] 窦智,张彦敏,刘畅,等.AUV水下通信技术研究现状及发展趋势探讨[J].舰船科学技术, 2020, 42(2): 93-97. DOI: 10.3404/j.issn.1672-7649.2020.02.018. [17] 陈友淦,许肖梅.人工智能技术在水声通信中的研究进展[J].哈尔滨工程大学学报, 2020, 41(10): 1536-1544. DOI: 10.11990/jheu.202007110. [18] MAHMUTOGLU Y, TURK K, TUGCU E. Particle swarm optimization algorithm based decision feedback equalizer for underwater acoustic communication[C] //2016 39th International Conference on Telecommunications and Signal Processing(TSP). Vienna, Austria, IEEE, 2016: 153-156. DOI: 10.1109/TSP.2016.7760848. [19] DESHPANDE A, SAKKARA S, SHESHADRI A. Underwater accoustic OFDM systems using deep neural network[C] //2022 3rd International Conference on Intelligent Engineering and Management(ICIEM), London, United Kingdom, IEEE, 2022: 195-200. DOI: 10.1109/ICIEM54221.2022.9853103. [20] WANG C F, WANG Z H, SUN W S, et al. Reinforcement learning-based adaptive transmission in time-varying underwater acoustic channels[J]. IEEE Access, 2017, 6: 2541-2558. DOI: 10.1109/ACCESS.2017.2784239. [21] KALAIARASU V, VISHNU H, MAHMOOD A, et al. Predicting underwater acoustic network variability using machine learning techniques[C] //OCEANS 2017 - Anchorage. Anchorage, AK, USA, IEEE, 2017: 1-7. [22] 陈双双,顾师嘉,李娜娜,等.基于残差时序卷积网络的水声通信信号模式识别[J]. 无线电工程, 2024, 54(2): 473-482. DOI: 10.3969 / j.issn.1003-3106.2024.02.027. [23] WANG Z Y, LI Y L, MA C P, et al. Path-following optimal control of autonomous underwater vehicle based on deep reinforcement learning[J]. Ocean Eng, 2023, 268: 113407. DOI: 10.1016/j.oceaneng.2022.113407. [24] WANG Z, XIANG X B, DUAN Y, et al. Adversarial deep reinforcement learning based robust depth tracking control for underactuated autonomous underwater vehicle[J]. Eng Appl Artif Intell, 2024, 130: 107728. DOI: 10.1016/j.engappai.2023.107728. [25] JIANG D, HUANG J, FANG Z, et al. Generative adversarial interactive imitation learning for path following of autonomous underwater vehicle[J]. Ocean Eng, 2022, 260: 111971. DOI: 10.1016/j.oceaneng.2022.111971. [26] 韩恩全.基于深度学习的三维自主避障技术研究[J].数字海洋与水下攻防, 2021, 4(4): 264-268. DOI: 10.19838/j.issn.2096-5753.2021.04.002. [27] BHOPALE P, KAZI F, SINGH N. Reinforcement learning based obstacle avoidance for autonomous underwater vehicle[J]. J Mar Sci Appl, 2019, 18(2): 228-238. DOI: 10.1007/s11804-019-00089-3. [28] CHEN Q H, YANG J M, ZHAO W H, et al. AI-based dynamic avoidance in deep-sea mining[J]. Ocean Eng, 2024, 311: 118945. DOI: 10.1016/j.oceaneng.2024.118945. [29] LU H M, LI Y J, ZHANG Y D, et al. Underwater optical image processing: a comprehensive review[J]. Mob Netw Appl, 2017, 22(6): 1204-1211. DOI: 10.1007/s11036-017-0863-4. [30] 罗逸豪,曹翔,张钧陶,等.基于深度学习的水下光学图像超分辨率重建综述[J].数字海洋与水下攻防, 2023, 6(1): 17-33. DOI: 10.19838/j.issn.2096-5753.2023.01.003. [31] 李思源,程磊,张婷,等.人工智能辅助的海洋立体观测与探测[J].数字海洋与水下攻防, 2023, 6(2):前插1, 120-132. DOI: 10.19838/j.issn.2096-5753.2023.02.001. [32] HUANG H, ZHOU H, YANG X, et al. Faster R-CNN for marine organisms detection and recognition using data augmentation[J]. Neurocomputing, 2019, 337: 372-384. DOI: 10.1016/j.neucom.2019.01.084. [33] 邹倩颖,陈晖阳,李永生,等.粒子群优化的深海图像暗边缘检测优化算法[J]. 应用科学学报, 2023, 41(1): 153-169. DOI: 10.3969/j.issn.0255-8297.2023.01.012. [34] 叶赵兵,段先华,赵楚.改进YOLOv3-SPP水下目标检测研究[J].计算机工程与应用, 2023, 59(6): 231-240. DOI: 10.3778/j.issn.1002-8331.2204-0264. [35] 李思聪,李然威.基于深度学习的深海会聚区目标分类方法[J].声学与电子工程, 2023(1): 18-23, 28. DOI: 10.3969/j.issn.2096-2657.2023.01.04. [36] 陈悦,罗逸豪,李锦.基于多模态感知的水下目标检测应用构想[J].数字海洋与水下攻防, 2024, 7(3): 334-341. DOI: 10.19838/j.issn.2096-5753.2024.03.012. [37] 王晨宇,刘礼文,刘罡,等.基于小样本条件下水下回波生成方法[J].水下无人系统学报, 2022, 30(5): 612-620. DOI: 10.11993/j.issn.2096-3920.202108015. [38] 张铭钧.水下机器人故障诊断理论与技术[M].哈尔滨: 哈尔滨工程大学出版社, 2016. [39] 王随平,张彤,宁小玲.基于集成神经网络的深海机器人故障诊断研究[J].计算机测量与控制, 2010, 18(4): 773-775. DOI: 10.16526/j.cnki.11-4762/tp.2010.04.060. [40] MARICHAL G N, DEL CASTILLO M L, LÓPEZ J, et al. An artificial intelligence approach for gears diagnostics in AUVs[J]. Sensors, 2016, 16(4): 529. DOI: 10.3390/s16040529. [41] RAANAN B Y, BELLINGHAM J, ZHANG Y W, et al. Detection of unanticipated faults for autonomous underwater vehicles using online topic models[J]. J Field Robot, 2018, 35(5): 705-716. DOI: 10.1002/rob.21771. [42] BAGCI DAS D, BIRANT D. GASEL: genetic algorithm-supported ensemble learning for fault detection in autonomous underwater vehicles[J]. Ocean Eng, 2023, 272: 113844. DOI: 10.1016/j.oceaneng.2023.113844. ( |