[1] MENG D C, LI L, WANG S H, et al. Fine-grained feature alignment with part perspective transformation for vehicle ReID[C] //Proceedings of the 28th ACM International Conference on Multimedia. October 12 - 16, 2020, Seattle, WA, USA. ACM, 2020: 619-627. DOI:10.1145/3394171.3413573. [2] MENG D C, LI L, LIU X J, et al. Parsing-based view-aware embedding network for vehicle re-identification[C] //2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). June 13-19, 2020, Seattle, WA, USA. IEEE, 2020:7101-7110.DOI:10.1109/CVPR42600.2020.00713. [3] XU Z M, WEI L L, LANG C Y, et al. SSR-net: a spatial structural relation network for vehicle re-identification[J]. ACM Trans Multimed Comput Commun Appl, 2023, 19(6): 1-22. DOI:10.1145/3578578. [4] QIAN J J, JIANG W, LUO H, et al. Stripe-based and attribute-aware network: a two-branch deep model for vehicle re-identification[J]. Meas Sci Technol, 2020, 31(9): 095401. DOI:10.1088/1361-6501/ab8b81. [5] WANG H B, PENG J J, CHEN D Y, et al. Attribute-guided feature learning network for vehicle reidentification[J]. IEEE MultiMedia, 2020, 27(4): 112-121. DOI:10.1109/MMUL.2020.2999464. [6] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C] //2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City, UT, USA. IEEE, 2018: 7132-7141. DOI:10.1109/CVPR.2018.00745.、 [7] ELSAYED G F, KORNBLITH S, LE Q V. Saccader: improving accuracy of hard attention models for vision[J]. 2019: 702-714. DOI:10.5555/3454287.3454351. [8] CHENG D, WANG X L, WANG N N, et al. Cross-modality person re-identification with memory-based contrastive embedding[C] //Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence. ACM, 2023: 425-432. DOI:10.1609/aaai.v37i1.25116. [9] HE K M, FAN H Q, WU Y X, et al. Momentum contrast for unsupervised visual representation learning[C] //2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). June 13-19, 2020. Seattle, WA, USA. IEEE, 2020: 9729-9738. DOI:10.1109/cvpr42600.2020.00975. [10] 彭锦佳,王辉兵.基于异构卷积神经网络集成的无监督行人重识别方法[J].电子学报, 2023, 51(10): 2902-2914. DOI:10.12263/DZXB.20220467. [11] LIU X C, LIU W, MEI T, et al. A deep learning-based approach to progressive vehicle re-identification for urban surveillance[M] //Computer Vision – ECCV 2016. Cham: Springer International Publishing, 2016: 869-884. DOI:10.1007/978-3-319-46475-6_53. [12] LIU H Y, TIAN Y H, WANG Y W, et al. Deep relative distance learning: tell the difference between similar vehicles[C] //2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 2167-2175. DOI:10.1109/CVPR.2016.238. [13] PAN X G, LUO P, SHI J P, et al. Two at once: enhancing learning and generalization capacities via IBN-net[C] //Computer Vision – ECCV 2018. ACM, 2018: 484-500. DOI:10.1007/978-3-030-01225-0_29. [14] SUN Y F, ZHENG L, YANG Y, et al. Beyond part models: person retrieval with refined part pooling(and A strong convolutional baseline)[C] //Computer Vision – ECCV 2018. ACM, 2018: 501-518. DOI:10.1007/978-3-030-01225-0_30. [15] JIANG G W, PANG X Y, TIAN X, et al. Global reference attention network for vehicle re-identification[J]. Appl Intell, 2023, 53(9): 11328-11343. DOI:10.1007/s10489-022-04000-6. [16] SHEN F, ZHU J Q, ZHU X B, et al. Exploring spatial significance via hybrid pyramidal graph network for vehicle re-identification[J]. IEEE Trans Intell Transp Syst, 2022, 23(7): 8793-8804. DOI:10.1109/TITS.2021.3086142. [17] QIAN J C, PAN M T, TONG W, et al. URRNet: a unified relational reasoning network for vehicle re-identification[J]. IEEE Trans Veh Technol, 2023, 72(9): 11156-11168. DOI:10.1109/TVT.2023.3262983. [18] HUANG F X, LV X F, ZHANG L. Coarse-to-fine sparse self-attention for vehicle re-identification[J]. Knowl Based Syst, 2023, 270: 110526. DOI:10.1016/j.knosys.2023.110526 [19] XIE Y, WU H X, ZHU J Q, et al. Distillation embedded absorbable pruning for fast object re-identification[J]. Pattern Recognit, 2024, 152: 110437. DOI:10.1016/j.patcog.2024.110437. [20] CUI B T, LI S, GUI J Y, et al. Viewpoint modeling with multi-task learning for vehicle re-identification[M] //PRICAI 2024: Trends in Artificial Intelligence. Singapore: Springer Nature Singapore, 2024: 37-49. DOI:10.1007/978-981-96-0125-7_4. [21] ZHENG Z D, RUAN T, WEI Y C, et al. VehicleNet: learning robust visual representation for vehicle re-identification[J]. IEEE Trans Multimed, 2020, 23: 2683-2693. DOI:10.1109/TMM.2020.3014488. [22] PENG J J, JIANG G Q, WANG H B. Generalized multiple sparse information fusion for vehicle re-identification[J]. J Vis Commun Image Represent, 2021, 79: 103207. DOI:10.1016/j.jvcir.2021.103207. [23] PANG X Y, YIN Y L, TIAN X. Global relational attention with a maximum suppression constraint for vehicle re-identification[J]. Int J Mach Learn Cybern, 2024, 15(5): 1729-1742. DOI:10.1007/s13042-023-01993-5. [24] SUN K, PANG X Y, ZHENG M F, et al. Heterogeneous context interaction network for vehicle re-identification[J]. Neural Netw, 2024, 169: 293-306. DOI:10.1016/j.neunet.2023.10.032. [25] HU W B, ZHAN H J, SHIVAKUMARA P, et al. TANet: Text region attention learning for vehicle re-identification[J]. Eng Appl Artif Intell, 2024, 133: 108448. DOI:10.1016/j.engappai.2024.108448. [26] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C] //2017 IEEE International Conference on Computer Vision(ICCV). October 22-29, 2017, Venice, Italy. IEEE, 2017: 618-626. DOI:10.1109/ICCV.2017.74. ( |