[1] WOLPAW J R, BIRBAUMER N, MCFARLAND D J, et al. Brain-computer interfaces for communication and control[J]. Clin Neurophysiol, 2002, 113(6): 767-791. DOI: 10.1016/s1388-2457(02)00057-3. [2] CHEN X, ZHAO B, WANG Y, et al. Control of a 7-DOF robotic arm system with an SSVEP-based BCI[J]. IntJ Neural Syst, 2018, 28(8): 1850018. DOI: 10.1142/s0129065718500181. [3] LI Y, PAN J, WANG F, et al. A hybrid BCI system combining P300 and SSVEP and its application to wheelchair control[J]. IEEE T Biomed Eng, 2013, 60(11): 3156-3166. DOI: 10.1109/tbme.2013.2270283. [4] WONG C M, TANG Q, DA CRUZ J N, et al. A multi-channel SSVEP-based BCI for computer games with analogue control[C] //2015 CIVEMSA. IEEE, 2015: 1-6. DOI: 10.1109/CIVEMSA.2015.7158612. [5] COOGAN C G, HE B. Brain-computer interface control in a virtual reality environment and applications for the internet of things[J]. IEEE Access, 2018, 6: 10840-10849. DOI: 10.1109/access.2018.2809453. [6] MAO X, LI W, LEI C, et al. A brain-robot interaction system by fusing human and machine intelligence[J]. IEEE T Neur Sys Reh, 2019, 27(3): 533-542. DOI: 10.1109/tnsre.2019.2897323. [7] ZHANG Y, XU P, LIU T, et al. Multiple frequencies sequential coding for SSVEP-based brain-computer interface[J]. PLoS One, 2012, 7(3): e29519. DOI: 10.1371/journal.pone.0029519. [8] ZHAO D, WANG T, TIAN Y, et al. Filter Bank Convolutional Neural Network for SSVEP Classification[J]. IEEE Access, 2021, 9: 147129-147141. DOI: 10.1109/access.2021.3124238. [9] 林中林,张雅静,高小榕, 等.一种通过脑电信号实时检测双眼竞争的方法[J].航天医学与医学工程,2007(5):381-384.DOI:10.16289/j.cnki.1002-0837.2007.05.007. DOI: 10.16289/j.cnki.1002-0837.2007.05.007. [10] ZHANG Y, YIN E, LI F, et al. Hierarchical feature fusion framework for frequency recognition in SSVEP-based BCIs[J]. Neural Networks, 2019, 119: 1-9. DOI: 10.1016/j.neunet.2019.07.007. [11] SHAO X, LIN M. Filter bank temporally local canonical correlation analysis for short time window SSVEPs classification[J]. Cogn Neurodynamics, 2020, 14(5): 689-696. DOI: 10.1007/s11571-020-09620-7. [12] WONG C M, WAN F, WANG B, et al. Learning across multi-stimulus enhances target recognition methods in SSVEP-based BCIs[J]. J Neural Eng, 2020, 17(1): 016026. DOI: 10.1088/1741-2552/ab2373. [13] 杜光景,谢俊,张玉彬, 等. 用于稳态视觉诱发电位脑机接口目标识别的深度学习方法[J]. 西安交通大学学报, 2019,53(11):42-48. DOI: 10.7652/xjtuxb201911006. [14] RAVI A, BENI N H, MANUEL J, et al. Comparing user-dependent and user-independent training of CNN for SSVEP BCI[J]. J Neural Eng, 2020, 17(2): 026028. DOI: 10.1088/1741-2552/ab6a67. [15] DANG W, LI M, LV D, et al. MHLCNN: Multi-harmonic linkage CNN model for SSVEP and SSMVEP signal classification[J]. IEEE T Circuits-II, 2021, 69(1): 244-248. DOI: 10.1109/tcsii.2021.3091803. [16] GUNEY O B, OBLOKULOV M, OZKAN H. A deep neural network for ssvep-based brain-computer interfaces[J]. IEEE T Biomed Eng, 2021, 69(2): 932-944. DOI: 10.1109/tbme.2021.3110440. [17] GUNEY O B, OBLOKULOV M, OZKAN H. A deep neural network for ssvep-based brain-computer interfaces[J]. IEEE T Biomed Eng, 2021, 69(2): 932-944. DOI: 10.1109/TBME.2021.3110440. [18] WANG Y, CHEN X, GAO X, et al. A benchmark dataset for SSVEP-based brain-computer interfaces[J]. IEEE T Neur Sys Reh, 2016, 25(10): 1746-1752. DOI: 10.1109/tnsre.2016.2627556. [19] LIU B, HUANG X, WANG Y, et al. BETA: A large benchmark database toward SSVEP-BCI application[J]. Front Neurosci, 2020, 14: 627. DOI: 10.3389/fnins.2020.00627. [20] MÜLLER-PUTZ G R, SCHERER R, Brauneis C, et al. Steady-state visual evoked potential(SSVEP)-based communication: Impact of harmonic frequency components[J]. J Neural Eng, 2005, 2(4): 123. DOI: 10.1088/1741-2560/2/4/008. [21] WANG Y, GAO X, HONG B, et al. Brain-computer interfaces based on visual evoked potentials[J]. IEEE Eng Med Biol, 2008, 27(5): 64-71. DOI: 10.1109/memb.2008.923958. [22] YIN E, ZHOU Z, JIANG J, et al. A dynamically optimized SSVEP brain-computer interface(BCI)speller[J]. IEEE T Biomed Eng, 2014, 62(6): 1447-1456. DOI: 10.1109/tbme.2014.2320948. [23] CHEN X, WANG Y, NAKANISHI M, et al. High-speed spelling with a noninvasive brain-computer interface[J]. P Natl Acad Sci, 2015, 112(44): E6058-E6067. DOI: 10.1073/pnas.1508080112. [24] TANAKA H, KATURA T, SATO H. Task-related component analysis for functional neuroimaging and application to near-infrared spectroscopy data[J]. NeuroImage, 2013, 64: 308-327. DOI: 10.1016/j.neuroimage.2012.08.044. [25] ZHANG Y, YIN E, LI F, et al. Two-stage frequency recognition method based on correlated component analysis for SSVEP-based BCI[J]. IEEE T Neur Sys Reh, 2018, 26(7): 1314-1323. DOI: 10.1109/tnsre.2018.2848222. [26] CHEN X, WANG Y, GAO S, et al. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface[J]. J Neural Eng, 2015, 12(4): 046008. DOI: 10.1088/1741-2560/12/4/046008. [27] WANG Y, NAKANISHI M, WANG Y T, et al. Enhancing detection of steady-state visual evoked potentials using individual training data[C] //2014 EMBC, IEEE, 2014: 3037-3040. DOI: 10.1109/embc.2014.6944263. ( |