[1] 陈亚婷, 吴博, 张国春, CHEN Ya-ting, WU Bo, ZHANG Guo-chun. 基于一种推广的Choquet积分的回归模型 [J]. 河北大学学报(自然科学版) 2010.doi:10.3969/j.issn.1000-1565.2010.04.004 [2] CHOQUET G. Theory of capacities [J]. Annales de l'Institut Fourier 1954, 5. [3] WANG Zhenyuan, GEORGE J K. Fuzzy measure theory [M]. New York:Plenum Press 1992. [4] D Denneberg. Non-Additive measure and integral [M]. London:London Kluwer Academic Publishers 1994. [5] WANG Zhenyuan, LEUNG K S, GEORGE J K. Applying fuzzy measures and nonlinear integral in data mining [J]. Fuzzy Sets and Systems 2005, 156. [6] Zhenyuan Wang, Kwong-Sak Leung, Man-Leung Wong. Nonlinear nonnegative multiregressions based on Choquet integrals [J]. International journal of approximate reasoning 2000, 2(2). [7] WANG Zhenyuan, RONG Yang, LEUNG K S. On the Choquet integral with fuzzy-valued integrand [A]. 2005. [8] Rong Yang, Zhenyuan Wang, Pheng-Ann Heng, Kwong-Sak Leung. Fuzzy numbers and fuzzification of the Choquet integral [J]. Fuzzy sets and systems 2005, 1(1). [9] RONG Yang, WANG Zhenyuan, PHENG ANN HENG A. Fuzzified Choquet integral with fuzzy-valued integrand and its application on temperature prediction [J]. IEEE T SMCB 2008, 38(02). [10] WANG Zhenyuan, LEE K H, LEUNG K S. The Choquet integral with respect to fuzzy-valued signed efficiency measures [A]. 2008. [11] Emad Elbeltagi, Tarek Hegazy, Donald Grierson. Comparison among five evolutionary-based optimization algorithms [J]. Advanced engineering informatics 2005, 1(1). |