[1] LIU J F, DING Y, ZHANG Y. New rare-earth permanent magnets with an intrinsic coercivity of 10 kOe at 500 ℃ [J]. Journal of Applied Physics 1999, 85(08). [2] H. Kronmuller, D. Goll. Micromagnetic analysis of pinning-hardened nanostructured, nanocrystalline Sm_2Co_(17) based alloys [J]. Scripta materialia 2002, 8(8). [3] Microchemistry and magnetization reversal mechanism in melt-spun 2:17-type Sm-Co magnets [J]. Applied physics letters 2003, 11(11). [4] X. Y. Xiong, T. Ohkubo, T. Koyama. The microstructure of sintered Sm(Co_(0.72)Fe_(0.20)Cu_(0.055)Zr_(0.025))_(7.5) permanent magnet studied by atom probe [J]. Acta materialia 2004, 3(3). [5] GOPALAN R, HONO K, YAN A Ru. Direct evidence for Cu concentration variation and its correlation to coercivity in Sm(Co0.74Fe0.1Cu0.12Zr0.04)7.4 ribbons [J]. Script Materials 2009, 60(09). [6] Anomalous temperature dependence of coercivity in precipitation hardened Pr-Co-Cu-Ti magnets [J]. Applied physics letters 2003, 6(6). [7] Tang W., Zhang Y., Gabay AM., Hadjipanayis GC.. Anomalous temperature dependence of coercivity in rare earth cobalt magnets [J]. Journal of Magnetism and Magnetic Materials 2002, 2(2). [8] Chuan-bing Rong, Hong-wei Zhang, Bao-gen Shen, J. Ping Liu. Mechanism of the anomalous temperature dependence of coercivity in Sm(Co, Fe, Cu, Zr)_(z) high-temperature magnets [J]. Applied physics letters 2006, 4(4). [9] Jian Zhang. Coherent precipitation in the TbCu_7-type GdCo-based ribbons prepared by simple processing [J]. Journal of Applied Physics 2005, 3(3). |