[1] 陈予恕. 非线性振动[M]. 北京: 高等教育出版社, 2002. [2] 陈予恕. 非线性振动、分岔和混沌理论及其应用[J]. 振动工程学报, 1992, 5(3): 235-250. DOI:10.16385/j.cnki.issn.1004-4523.1992.03.009. [3] 刘延柱,陈立群. 非线性振动[M]. 北京: 高等教育出版社, 2001. [4] CHEN Y M, LIU J K. A new method based on the harmonic balance method for nonlinear oscillator [J]. Physics Letters A, 2007, 368(5): 371-378. DOI:10.1016/j.physleta.2007.04.025. [5] LAU S L, CHEUNG Y K. Amplitude incremental variational principle for nonlinear of elastic systems[J]. Journal of Applied Mechanies, 1981, 48: 959-964. DOI: 10.1115/1.3157762. [6] YUSTE S B. Comments on the method of harmonic-balance in which Jacobi elliptic function are used[J]. Journal of Sound and Vibration, 1991, 145(3): 381-390. DOI: 10.1016/0022-460X(91)90109-W. [7] HUSEYIN K, LIN R. An intrinsic multiple-scale harmonic balance method for nonlinear vibration and bifurcation problems[J]. International Journal of Non-linear Mechanics, 1991, 26: 727-740. DOI: 10.1016/0020-7462(91)90023-M. [8] SUMMERS J L, SAVAGE M D. 2 timescale harmonic-balance. I. Application to autonomous one-dimensional nonlinear oscillators[J]. Philosophical Transactions of the Royal Society A, 1992, 3: 340-473. DOI: 10.1098/rsta.1992.0077. [9] 张琪昌,王洪礼. 分岔与混沌理论及应用[M]. 天津: 天津大学出版社, 2005. [10] CHOW, S N, MALLER-PARET. Integral averaging and bifurcations[J]. Differential Equations, 1977, 26: 112- 159. DOI: 10.1016/0022-0396(77)90101-2. [11] CHEUNG Y K, XU Z. Intemal resonance of strongly non-linear autonomous vibrating systems with many degrees of freedom[J]. Journal of Sound and Vibration, 1995, 180(2): 229-238. DOI:10.1006/jsvi.1995.0076. [12] ALBERT C, LUO J. ARASH BAGHAEI LAKEH. Period-m motions and bifurcation trees in a periodically forced van der Pol-Duffing oscillator[J]. International Journal of Dynamics and Control, 2014, 2(4):474-493. DOI: 10.1007/s40435-014-0058-9. |