[1] WANG S, ZHOU M, LIU Z Y, et al. Central focused convolutional neural networks: developing a data-driven model for lung nodule segmentation[J]. Med Image Anal, 2017, 40: 172-183. DOI: 10.1016/j.media.2017.06.014. [2] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C] //International Conference on Medical Image Computing and Computer-Assisted Intervention, Cham: Springer, 2015: 234-241.10.1007/978-3-319-24574-4_28. [3] CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C] //European Conference on Computer Vision. Cham: Springer, 2018: 833-851.10.1007/978-3-030-01234-2_49. [4] ZHANG B H, QI S L, WU Y N, et al. Multi-scale segmentation squeeze-and-excitation UNet with conditional random field for segmenting lung tumor from CT images[J]. Comput Methods Programs Biomed, 2022, 222: 106946. DOI: 10.1016/j.cmpb.2022.106946. [5] NI Y F, XIE Z, ZHENG D Z, et al. Two-stage multitask U-Net construction for pulmonary nodule segmentation and malignancy risk prediction[J]. Quant Imaging Med Surg, 2022, 12(1): 292-309. DOI: 10.21037/qims-21-19. [6] ZHOU Y Y, LI Z, BAI S, et al., Prior-aware neural network for partially-supervised multi-organ segmentation[C] //2019 IEEE/CVF International Conference on Computer Vision(ICCV), 2019: 10671-10680. DOI: 10.1109/ICCV.2019.01077. [7] YU H, LI J Q, ZHANG L X, et al. Design of lung nodules segmentation and recognition algorithm based on deep learning[J]. BMC Bioinformatics, 2021, 22(Suppl 5): 314. DOI: 10.1186/s12859-021-04234-0. [8] OKTAY O, SCHLEMPER J, LE FOLGOC L, et al. Attention U-net: learning where to look for the pancreas[EB/OL]. 2018: arXiv: 1804.03999. http://arxiv.org/abs/1804.03999. [9] WANG Z K, ZOU Y N, LIU P X. Hybrid dilation and attention residual U-Net for medical image segmentation[J]. Comput Biol Med, 2021, 134: 104449. DOI: 10.1016/j.compbiomed.2021.104449. [10] LIN H N, LI Z S, YANG Z F, et al. Variance-aware attention U-Net for multi-organ segmentation[J]. Med Phys, 2021, 48(12): 7864-7876. DOI: 10.1002/mp.15322. [11] HU J F, WANG H, WANG J, et al. SA-Net: a scale-attention network for medical image segmentation[J]. PLoS One, 2021, 16(4): e0247388. DOI: 10.1371/journal.pone.0247388. [12] ZHOU Z W, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: A nested U-net architecture for medical image segmentation[C] //International Workshop on Deep Learning in Medical Image Analysis, International Workshop on Multimodal Learning for Clinical Decision Support. Cham: Springer, 2018: 3-11.10.1007/978-3-030-00889-5_1. [13] CAI Y T, WANG Y. MA-Unet: an improved version of Unet based on multi-scale and attention mechanism for medical image segmentation[C] //Proc SPIE 12167, Third International Conference on Electronics and Communication; Network and Computer Technology(ECNCT 2021), 2022, 12167: 205-211. DOI: 10.1117/12.2628519. [14] AN F P, LIU J E. Medical image segmentation algorithm based on multilayer boundary perception-self attention deep learning model[J]. Multimed Tools Appl, 2021, 80(10): 15017-15039. DOI: 10.1007/s11042-021-10515-w. [15] ZHANG H, ZHONG X, LI G, et al. BCU-Net: bridging ConvNeXt and U-Net for medical image segmentation[J]. Comput Biol Med, 2023, 159: 106960. DOI: 10.1016/j.compbiomed.2023.106960. [16] LI, Z H, LI D H, XU C B, et al. TFCNs: A CNN-Transformer Hybrid Network for Medical Image Segmentation[C] //In International Conference on Artificial Neural Networks, Cham: Springer Nature Switzerland, 2022: 781-792. DOI:10.1007/978-3-031-15937-4_65. [17] TANG P, YANG P L, NIE D, et al. Unified medical image segmentation by learning from uncertainty in an end-to-end manner[J]. Knowl Based Syst, 2022, 241: 108215. DOI: 10.1016/j.knosys.2022.108215. [18] CLARK K, VENDT B, SMITH K, et al. The cancer imaging archive(TCIA): maintaining and operating a public information repository[J]. J Digit Imag, 2013, 26(6): 1045-1057. DOI: 10.1007/s10278-013-9622-7. [19] KERVADEC H, BOUCHTIBA J, DESROSIERS C, et al. Boundary loss for highly unbalanced segmentation[J]. Med Image Anal, 2021, 67: 101851. DOI: 10.1016/j.media.2020.101851. [20] XUE Y, TANG H, QIAO Z, et al. Shape-aware organ segmentation by predicting signed distance maps[J]. Proc AAAI Conf Artif Intell, 2020, 34(7): 12565-12572. DOI: 10.1609/aaai.v34i07.6946. [21] BERMAN M, TRIKI A R, BLASCHKO M B. The lovasz-softmax loss: a tractable surrogate for the optimization of the intersection-over-union measure in neural networks[C] //2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018. Salt Lake City, UT, IEEE, 2018: 4413-4421. DOI: 10.1109/cvpr.2018.00464. [22] ARMATO S G 3rd, MCLENNAN G, BIDAUT L, et al. The lung image database consortium(LIDC)and image database resource initiative(IDRI): a completed reference database of lung nodules on CT scans[J]. Med Phys, 2011, 38(2): 915-931. DOI: 10.1118/1.3528204. [23] CHEN J N, LU Y Y, YU Q H, et al. TransUNet: transformers make strong encoders for medical image segmentation[EB/OL]. 2021: arXiv: 2102.04306. http://arxiv.org/abs/2102.04306. ( |