[1] 蔡桂月,李思锐,刘颖,等.皮肤肿瘤患者外周血循环肿瘤细胞与循环肿瘤血管内皮细胞检测的临床价值[J].皮肤性病诊疗学杂志, 2023, 30(3): 198-204. DOI: 10.3969/j.issn.1674-8468.2023.03.003. [2] ZENG L, JASWANTH GOWDA B H J, AHMED M G, et al. Advancements in nanoparticle-based treatment approaches for skin cancer therapy[J]. Mol Cancer, 2023, 22(1): 10. DOI: 10.1186/s12943-022-01708-4. [3] KING C, FOWLER J C, ABNIZOVA I, et al. Somatic mutations in facial skin from countries of contrasting skin cancer risk[J]. Nat Genet, 2023, 55(9): 1440-1447. DOI: 10.1038/s41588-023-01468-x. [4] WU Y H, CHOU C L, CHANG H C. Risk of skin cancer after ultraviolet phototherapy in patients with vitiligo: a systematic review and meta-analysis[J]. Clin Exp Dermatol, 2022, 47(4): 692-699. DOI: 10.1111/ced.15010. [5] 唐洪波,梁俊琴.紫外线致非黑色素瘤皮肤癌的作用机制研究进展[J].肿瘤预防与治疗,2019, 32(10): 940-944. DOI: 10.3969/j.issn.1674-0904.2019.10.014. [6] 崔灿,张芳,孙圆圆,等.Sirtuins在皮肤恶性肿瘤发病机制中的作用及研究进展[J].皮肤病与性病, 2023, 45(4): 238-241. DOI: 10.3969/j.issn.1002-1310.2023.04.003. [7] 万春雷.皮肤癌的发病机制及在不同种群的发病差异[J].皮肤科学通报, 2022, 39(3): 173-176. [8] TSCHANDL P, RINNER C, APALLA Z, et al. Human-computer collaboration for skin cancer recognition[J]. Nat Med, 2020, 26(8): 1229-1234. DOI: 10.1038/s41591-020-0942-0. [9] ESTEVA A, KUPREL B, NOVOA R A, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. nature, 2017, 542(7639): 115-118. DOI: 10.1038/nature21056. [10] GULSHAN V, PENG L, CORAM M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. jama, 2016, 316(22): 2402-2410. DOI: 10.1001/jama.2016.17216. [11] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C] //2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). June 27-30, 2016, Las Vegas, NV, USA, IEEE, 2016: 770-778. DOI: 10.1109/cvpr.2016.90. [12] KLINKER F. Exponential moving average versus movingexponentialaverage[J]. Math Semesterber, 2011, 58(1): 97-107. DOI: 10.1007/s00591-010-0080-8. [13] WANG Y D, CHEN H, HENG Q, et al. FreeMatch: self-adaptive thresholding for semi-supervised learning[EB/OL]. 2022: arXiv: 2205.07246. http://arxiv.org/abs/2205.07246. [14] WANG Y, CHEN H, HENG Q, et al. Freematch: Self-adaptive thresholding for semi-supervised learning[J]. arxiv preprint arxiv:2205.07246, 2022. DOI:https://doi.org/10.48550/arXiv.2205.07246. [15] TSCHANDL P, ROSENDAHL C, KITTLER H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions[J]. Sci Data, 2018, 5: 180161. DOI: 10.1038/sdata.2018.161. [16] AMARI S I. Backpropagation and stochastic gradient descent method[J]. Neurocomputing, 1993, 5(4/5): 185-196. DOI: 10.1016/0925-2312(93)90006-o. [17] HUANG Z, WU J, WANG T, et al. Class-specific distribution alignment for semi-supervised medical image classification[J]. Computers in Biology and Medicine, 2023, 164: 107280. DOI: 10.1016/j.compbiomed.2023.107280. [18] SOHN K, BERTHELOT D, CARLINI N, et al. Fixmatch: Simplifying semi-supervised learning with consistency and confidence[J]. Advances in neural information processing systems, 2020, 33: 596-608. DOI:https://doi.org/10.48550/arXiv.2001.07685. [19] HE J, KORTYLEWSKI A, YANG S, et al. Rethinking re-sampling in imbalanced semi-supervised learning[J]. arxiv preprint arxiv:2106.00209, 2021. DOI:https://doi.org/10.48550/arXiv.2106.00209. ( |