[1] WANG R, SHIVANNA R, CHENG D, et al. DCNv2: Improved deep & cross network and practical lessons for web-scale learning to rank systems[C] //Proceedings of the Web Conference, 2021: 1785-1797. DOI:10.1145/3442381.3450078. [2] RICHARDSON M, DOMINOWSKA E, RAGNO R. Predicting clicks: Estimating the click-through rate for new ads[C] //Proceedings of the 16th International Conference on World Wide Web. 2007: 521-530. DOI:10.1145/1242572.1242643. [3] HE X, CHUA T S. Neural factorization machines for sparse predictive analytics[C] //Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2017: 355-364. DOI:10.1145/3077136.3080777. [4] QU Y, FANG B, ZHANG W, et al. Product-based neural networks for user response prediction over multi-field categorical data[J]. ACM Transactions on Information Systems, 2018, 37(1): 1-35. DOI:10.1145/3233770. [5] CHENG H T, KOC L, HARMSEN J, et al. Wide & deep learning for recommender systems[C] //Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, 2016: 7-10. DOI:10.1145/2988450.2988454. [6] RENDLE S. Factorization machines[C] //Proceedings of the 10th IEEE International Conference on Data Mining, 2010: 995-1000. DOI:10.1109/ICDM.2010.127. [7] JUAN Y, ZHUANG Y, CHIN W S, LIN C J. Field-aware factorization machines for CTR prediction[C] //Proceedings of the 10th ACM Conference on Recommender Systems, 2016: 43-50. DOI:10.1145/2959100.2959134. [8] XIAO J, YE H, HE X, et al. Attentional factorization machines: Learning the weight of feature interactions via attention networks[C] //Proceedings of the 26th International Joint Conference on Artificial Intelligence, 2017: 3119-3125. DOI:10.24963/ijcai.2017/435. [9] LI X, CHEN S, DONG J, et al. Decision-making context interaction network for click-through rate prediction[C] //Proceedings of the AAAI Conference on Artificial Intelligence, 2023: 5195-5202. DOI:10.1609/aaai.v37i4.25649. [10] ZHANG X, WANG Z, DU B, et al. Deep session heterogeneity-aware network for click through rate prediction[J] //IEEE Trans Knowl Data Eng, 2024:1-14. DOI: 10.1109/TKDE.2024.3421594. [11] GUO H, TANG R, YE Y, et al. DeepFM: A factorization-machine based neural network for CTR prediction[C] //Proceedings of the 26th International Joint Conference on Artificial Intelligence, 2017: 1725-1731. DOI:10.24963/ijcai.2017/239. [12] WANG R, FU B, FU G, et al. Deep & cross network for ad click predictions[C] //Proceedings of the ADKDD’17, 2017: 1-7. DOI:10.1145/3124749.3124754. [13] LIAN J, ZHOU X, ZHANG F, et al. xDeepFM: Combining explicit and implicit feature interactions for recommender systems[C] //Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018: 1754-1763. DOI:10.1145/3219819.3220023. [14] ZHOU G, ZHU X, SONG C, et al. Deep interest network for click-through rate prediction[C] //Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018: 1059-1068. DOI:10.1145/3219819.3219823. [15] ZHAI P, YANG Y, ZHANG C. Causality-based CTR prediction using graph neural networks[J]. Information Processing & Management, 2023,60(1): 103137. DOI:10.1016/j.ipm.2022.103137. [16] LI Z, CUI Z, WU S, et al. Fi-gnn: Modeling feature interactions via graph neural networks for ctr prediction[C] //Proceedings of the 28th ACM international conference on information and knowledge management, 2019: 539-548.DOI:10.1145/3357384.3357951 [17] LI Z, WU S, CUI Z, ZHANG X. GraphFM: Graph Factorization Machines for feature interaction modeling[J]. arXiv preprint, 2021. DOI:10.48550/arXiv.2105.11866. [18] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141. DOI:10.1109/CVPR.2018.00745. [19] YU F, LIU Z, LIU Q, et al. Deep interaction machine: A simple but effective model for high-order feature interactions[C] //Proceedings of the 29th ACM International Conference on Information & Knowledge Management, 2020: 2285-2288. DOI:10.1145/3340531.3412077. [20] BLONDEL M, FUJINO A, UEDA N, ISHIHATA M. Higher-order factorization machines[C] //Advances in Neural Information Processing Systems, 2016: 3351-3359. DOI:10.5555/3157382.3157473. [21] PAN J, XU J, LOBOS RUIZ A, et al. Field-weighted factorization machines for click-through rate prediction in display advertising[C] //Proceedings of the 2018 World Wide Web Conference, 2018: 1349-1357. DOI:10.1145/3178876.3186040. [22] SUN Y, PAN J, ZHANG A, et al. FM2: Field-matrixed factorization machines for recommender systems[C] //Proceedings of the Web Conference 2021, 2021: 2828-2837. DOI:10.1145/3442381.3449930. [23] SONG W, SHI C, XIAO Z, et al. AutoInt: Automatic feature interaction learning via self attentive neural networks[C] //Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 2019: 1161-1170. DOI:10.1145/3357384.3357925. [24] HUANG T, ZHANG Z, ZHANG J. FiBiNET: Combining feature importance and bilinear feature interaction for click-through rate prediction[C] //Proceedings of the 13th ACM Conference on Recommender Systems, 2019: 169-177. DOI:10.1145/3298689.3347043. [25] TIAN Z, BAI T, ZHANG Z, et al. Directed acyclic graph factorization machines for CTR prediction via knowledge distillation[C] //Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, 2023: 1-9. DOI:10.1145/3539597.3570384. [26] KINGMA D P, BA J. Adam: A method for stochastic optimization[C] //arXiv preprint, 2014. DOI:10.48550/arXiv.1412.6980. ( |