[1] 周志华. 机器学习[M]. 北京: 清华大学出版社,2016. [2] GOODFELLOW I, POUGE A J, MIRZA M, et al. Generative adversarial networks [J]. Advance in Neural Information Processing Systems, 2014(3): 2672-2680. DOI: 10.1145/3422622. [3] GHOSH A, KULHARIA V, NAMBOODIRI V P, et al. Multi-agent diverse generative adversarial networks [C] // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8513-8521. DOI: 10.1109/CVPR.2018.00888. [4] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks [C] //Proceeding of the 34th International Conference on Machine Learning, New York: ACM, 2017, 214-223.DOI:10.5555/3305381.3305404. [5] SCHUTZ B, ILYAS S, LE K, et al. Nanoparticle arrays having directed hybrid topology via covalent self-assembly of iron oxide and silica nanoparticles [J]. ACS Applied Nano Materials, 2020, 3(6):5936-5943. DOI:10.1021/acsanm.0c01097. [6] CHAKRABORTY S, ROY M. A multi-level weighted transformation based neuro-fuzzy domain adaptation technique using stacked auto-encoder for land-cover classification [J]. International Journal of Remote Sensing, 2020, 41(17):6831-6857. DOI:10.1080/01431161.2020.1750735. [7] ZORAN J, NICOLA C, DAVID B P, et al. A highly parameterizable framework for conditional restricted boltzmann machine based workloads accelerated with FPGAs and OpenCL [J]. Future Generation Computer Systems, 2020(104):201-211. DOI:10.1016/j.future.2019.10.025. [8] ZHENG J, SU Y X, ZHANG D H, et al. Velocity forecasts using a combined deep learning model in hybrid electric vehicles with V2V and V2I communication [J]. Science China Technological Sciences, 2020, 63(1):55-64. DOI:10.1007/s11431-018-9396-0. [9] ODENA A, OLAH C, SHLENS J. Conditional image synthesis with auxiliary classifier GAN [C] //Proc of the 34th International Conference on Machine Learning, New York: ACM, 2017. 2642-2651. DOI:10.5555/3305890.3305954. [10] SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for training GAN [C] //Proc of the 30th Advances in Neural Information Processing Systems, Massachusetts: MIT Press, 2016: 2226-2234. DOI:10.5555/3157096.3157346. [11] 周祥全, 张津. 深层网络中的梯度消失现象[J]. 科技展望, 2017, 27(27):284-284. [12] DENTON E L, CHINTALA S, SZLAM A, et al. Deep generative image models using a Laplacian pyramid of adversarial networks [C] //Proc of the 28th International Conference on Neural Information Processing Systems, Montreal, Canada: MIT Press, 2015: 1486-1494.DOI:10.5555/2969239.2969405. [13] LIU M Y, TUZEL O. Coupled generative adversarial networks [C] //Proc of the 30th Advances in Neural Information Processing Systems, Massachusetts: MIT Press, 2016: 469-477.DOI:10.5555/3157096.3157149. [14] MIRZA M, OSINDERO S. Conditional generative adversarial nets [EB/OL]. [2019-07-01]. http://arxiv.org/pdf/1411.1784.pdf. [15] OORD A, KALCHBRENNER N, ESPEHOLT L, et al. Conditional image generation with PixelCNN decoders [C] //Proc of the 30th Advances in Neural Information Processing Systems, Massachusetts: MIT Press, 2016: 4790-4798.DOI:10.5555/3157382.3157633. [16] HE K M, ZHANG X, REN S, et al. Deep residual learning for image recognition [C] //Proc of the 34th IEEE Conference on Computer Vision and Pattern Recognition, NJ: IEEE, 2016: 770-778. DOI: 10.1109/CVPR.2016.90. [17] 徐继伟, 杨云. 集成学习方法:研究综述[J]. 云南大学学报(自然科学版), 2018, 40(6):1082-1092. DOI:10.7540/j.ynu.20180455. [18] CRESWELL A, WHITE T, DUMOULIN V, et al. Generative adversarial networks: An Overview [J]. IEEE Signal Processing Magazine, 2017, 35(1):53-65. DOI:10.1109/MSP.2017.2765202. [19] PEI S, TANG F, JI Y, et al. Localized traffic sign detection with multi-scale deconvolution networks [C] //IEEE 42nd Annual Computer Software and Applications Conference, 2018: 355-360. DOI: 10.1109/COMPSAC.2018.00056. ( |