Journal of Hebei University(Natural Science Edition) ›› 2022, Vol. 42 ›› Issue (2): 199-207.DOI: 10.3969/j.issn.1000-1565.2022.02.014
Previous Articles Next Articles
ZHAO Jianxi1, YIN Xiujuan2, FANG Ziyuan3, DU Zishuo4, ZHU Lin2, ZHAO Zhanjuan3
Received:
2021-09-16
Online:
2022-03-25
Published:
2022-04-12
CLC Number:
ZHAO Jianxi, YIN Xiujuan, FANG Ziyuan, DU Zishuo, ZHU Lin, ZHAO Zhanjuan. Research progress of photodynamic therapy for osteomyelitis[J]. Journal of Hebei University(Natural Science Edition), 2022, 42(2): 199-207.
Add to citation manager EndNote|Ris|BibTeX
URL: //xbzrb.hbu.edu.cn/EN/10.3969/j.issn.1000-1565.2022.02.014
[1] XU C P, CHEN Y, SUN H T, et al. Efficacy of NEMO-binding domain peptide used to treat experimental osteomyelitis caused by methicillin-resistant Staphylococcus aureus: an in-vivo study[J]. Antimicrob Resist Infect Control, 2019, 8: 182. DOI:10.1186/s13756-019-0627-y. [2] SURDU-BOB C C, COMAN C, BARBUCEANU F, et al. The influence of foreign body surface area on the outcome of chronic osteomyelitis[J]. Med Eng Phys, 2016,38(9): 870-876. DOI:10.1016/j.medengphy.2016.04.0 27. [3] JENNISON T, MCNALLY M, PANDIT H. Prevention of infection in external fixator pin sites[J]. Acta Biomater, 2014, 10(2): 595-603. DOI:10.1016/j.actbio.2013.09.019. [4] OBRIEN C L, MENON M, JOMHA N M. Controversies in the management of open fractures[J]. Open Orthop J, 2014, 8(1): 178-184. DOI:10.2174/1874325001408010178. [5] MALIZOS K N, GOUGOULIAS N E, DAILIANA Z H, et al. Ankle and foot osteomyelitis: treatment protocol and clinical results[J]. Injury, 2010, 41(3): 285-293. DOI:10.1016/j.injury.2009.09.010. [6] TSCHUDIN-SUTTER S, FREI R, DANGEL M, et al. Validation of a treatment algorithm for orthopaedic implant-related infections with device-retention-results from a prospective observational cohort study[J]. Clin Microbiol Infect, 2016, 22(5): 457.e1-457.e9. DOI:10.1016/j.cmi.2016.01.004. [7] TAVARES A, CARVALHO C M, FAUSTINO M A, et al. Antimicrobial photodynamic therapy: study of bacterial recovery viability and potential development of resistance after treatment[J]. Mar Drugs, 2010, 8(1): 91-105. DOI:10.3390/md8010091. [8] THORPE K E, JOSKI P, JOHNSTON K J. Antibiotic-resistant infection treatment costs have doubled since 2002, now exceeding $2 billion annually[J]. Health Aff(Millwood), 2018, 37(4): 662-669. DOI:10.1377/hlthaff.2017.1153. [9] ZHANG X, LU Q, LIU T, et al. Bacterial resistance trends among intraoperative bone culture of chronic osteomyelitis in an affiliated hospital of South China for twelve years[J]. BMC Infect Dis, 2019, 19(1): 823. DOI:10.1186/s12879-019-4460-y. [10] SHIPITSYNA I V, OSIPOVA E V, ASTASHOVA O A, et al. Monitoring of the leading causative agents of osteomyelitis and their antibiotic resistance[J]. Klin Lab Diagn, 2020, 65(9): 562-566. DOI:10.18821/0869-2084-2020-65-9-562-566. [11] ANAGNOSTAKOS K, WILMES P, SCHMITT E, et al. Elution of gentamicin and vancomycin from polymethylmethacrylate beads and hip spacers in vivo[J]. Acta Orthop, 2009, 80(2): 193-197. DOI:10.3109/17453670902884700. [12] BARRETT R J, SANDQUIST L, RICHARDS B F, et al. Antibiotic-impregnated polymethylmethacrylate as an anterior biomechanical device for the treatment of cervical discitis and vertebral osteomyelitis: technical report of two cases[J]. Turkish Neurosurg, 2014, 24(4): 613-617. DOI:10.5137/1019-5149.jtn.9380-13.0. [13] JEVONS M P. “Celbenin”-resistant staphylococci[J]. BMJ, 1961, 1(5219): 124-125. DOI:10.1136/bmj.1.5219.12 4-a. [14] HEROLD B C, IMMERGLUCK L C, MARANAN M C, et al. Community-acquired methicillin-resistant Staphylococcus aureus in children with no identified predisposing risk[J]. Jama, 1998, 279(8): 593-598. DOI:10.1001/jama.279.8.593. [15] DAGHER M, RUFFIN F, MARSHALL S, et al. Case report: successful rescue therapy of extensively drug-resistant acinetobacter baumannii osteomyelitis with cefiderocol[J]. Open Forum Infect Dis, 2020, 7(5): ofaa150. DOI:10.1093/ofid/ofaa150. [16] TANDE A J, OSMON D R, GREENWOOD-QUAINTANCE K E, et al. Clinical characteristics and outcomes of prosthetic joint infection caused by small colony variant staphylococci[J]. mBio, 2014, 5(5): e01910-e01914. DOI:10.1128/mbio.01910-14. [17] GRAMMATICO-GUILLON L, BARON S, GETTNER S, et al. Bone and joint infections in hospitalized patients in France, 2008: clinical and economic outcomes[J]. J Hosp Infect, 2012, 82(1): 40-48. DOI:10.1016/j.jhin.2012. 04.025. [18] KARAU M J, SCHMIDT-MALAN S M, ALBANO M, et al. Novel use of rifabutin and rifapentine to treat methicillin-resistant staphylococcus aureus in a rat model of foreign body osteomyelitis[J]. J Infect Dis, 2020, 222(9): 1498-1504. DOI:10.1093/infdis/jiaa401. [19] ARCHER N K, MAZAITIS M J, COSTERTON J W, et al. Staphylococcus aureus biofilms: properties, regulation, and roles in human disease[J]. Virulence, 2011, 2(5): 445-459. DOI:10.4161/viru.2.5.17724. [20] JOHNSON C T, WROE J A, AGARWAL R, et al. Hydrogel delivery of lysostaphin eliminates orthopedic implant infection by Staphylococcus aureus and supports fracture healing[J]. PNAS, 2018, 115(22): E4960-E4969. DOI:10.1073/pnas.1801013115. [21] GRAF A C, LEONARD A, SCHÄUBLE M, et al. Virulence factors produced by staphylococcus aureus biofilms have a moonlighting function contributing to biofilm integrity[J]. Mol Cell Proteom, 2019, 18(6): 1036-1053. DOI:10.1074/mcp.RA118.001120. [22] LUO Y, YANG Q Q, ZHANG D, et al. Mechanisms and control strategies of antibiotic resistance in pathological biofilms[J]. J Microbiol Biotechnol, 2021, 31(1): 1-7. DOI:10.4014/jmb.2010.10021. [23] XU Y Y, ZHANG B P, WANG L, et al. Unusual features and molecular pathways of Staphylococcus aureus L-form bacteria[J]. Microb Pathog, 2020, 140: 103970. DOI:10.1016/j.micpath.2020.103970. [24] 陈晓东,周之德,胡汝麒,等. 慢性化脓性骨髓炎与细菌L型感染的关系[J]. 中国矫形外科杂志,2000,7(2):134. DOI:10.3969/j.issn.1005-8478.2000.02.031. [25] SPERANDIO F F, HUANG Y Y, HAMBLIN M R. Antimicrobial photodynamic therapy to kill Gram-negative bacteria[J]. Recent Pat Antiinfect Drug Discov, 2013, 8(2): 108-120. DOI:10.2174/1574891x113089990012. [26] WU M, XU L, CAI Z, et al. Disinfection of cariogenic pathogens in planktonic lifestyle, biofilm and carious dentine with antimicrobial photodynamic therapy[J]. Photochem Photobiol, 2020, 96(1): 170-177. DOI:10.1111/php.13161. [27] MAISCH T. A new strategy to destroy antibiotic resistant microorganisms: antimicrobial photodynamic treatment[J]. Mini Rev Med Chem, 2009, 9(8): 974-983. DOI:10.2174/138955709788681582. [28] BISLAND S K, BURCH S. Photodynamic therapy of diseased bone[J]. Photodiagnosis Photodyn Ther, 2006, 3(3): 147-155. DOI:10.1016/S1572-1000(06)00036-6. [29] BISLAND S K, CHIEN C, WILSON B C, et al. Pre-clinical in vitro and in vivo studies to examine the potential use of photodynamic therapy in the treatment of osteomyelitis[J]. Photochem Photobiol Sci, 2006, 5(1): 31-38. DOI:10.1039/b507082a. [30] LU X, CHEN R, LV J, et al. High-resolution bimodal imaging and potent antibiotic/photodynamic synergistic therapy for osteomyelitis with a bacterial inflammation-specific versatile agent[J]. Acta Biomater, 2019, 99: 363-372. DOI:10.1016/j.actbio.2019.08.043. [31] JORI G, FABRIS C, SONCIN M, et al. Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications[J]. Lasers Surg Med, 2006, 38(5): 468-481. DOI:10.1002/lsm.20361. [32] GOTO B, IRIUCHISHIMA T, HORAGUCHI T, et al. Therapeutic effect of photodynamic therapy using Na-pheophorbide A on osteomyelitis models in rats[J]. Photomed Laser Surg, 2011, 29(3): 183-189. DOI:10.1089/pho.2010.2803. [33] TARDIVO J P, BAPTISTA M S. Treatment of osteomyelitis in the feet of diabetic patients by photodynamic antimicrobial chemotherapy[J]. Photomed Laser Surg, 2009, 27(1): 145-150. DOI:10.1089/pho.2008.2252. [34] KLAUSEN M, UCUNCU M, BRADLEY M. Design of photosensitizing agents for targeted antimicrobial photodynamic therapy[J]. Molecules, 2020, 25(22): 5239. DOI:10.3390/molecules25225239. [35] KHAYYAT S A, ROSELIN L S. Recent progress in photochemical reaction on main components of some essential oils[J]. J Saudi Chem Soc, 2018, 22(7): 855-875. DOI:10.1016/j.jscs.2018.01.008. [36] BOYLE R W, DOLPHIN D. Structure and biodistribution relationships of photodynamic sensitizers[J]. Photochem Photobiol, 1996, 64(3): 469-485. DOI:10.1111/j.1751-1097.1996.tb03093.x. [37] ZHANG X, ABID S, SHI L M, et al. New conjugated meso-tetrathienylporphyrin-cored derivatives as two-photon photosensitizers for singlet oxygen generation[J]. Dyes Pigments, 2018, 153: 248-255. DOI:10.1016/j.dyepig.2018.01.028. [38] BELYKH D V, KOZLOV A S, PYLINA Y I, et al. Copper сomplexes of сhlorin derivatives of chlorophyll a as potential photosensitizers for medical purposes[J]. Macroheterocycles, 2019, 12(1): 68-74. DOI:10.6060/mhc19 0128b. [39] SELMAN S H, HAMPTON J A, MORGAN A R, et al. Copper benzochlorin, a novel photosensitizer for photodynamic therapy: effects on a transplantable urothelial tumor[J]. Photochem Photobiol, 1993, 57(4): 681-685. DOI:10.1111/j.1751-1097.1993.tb02937.x. [40] BALÇIK-ERÇIN P, ÇETIN M, GÖKSEL M, et al. Improved targeting for photodynamic therapy via a biotin-phthalocyanine conjugate: synthesis, photophysical and photochemical measurements, and in vitro cytotoxicity assay[J]. New J Chem, 2020, 44(8): 3392-3401. DOI:10.1039/c9nj04991f. [41] JIA R, TIAN W, BAI H, et al. Sunlight-driven wearable and robust antibacterial coatings with water-soluble cellulose-based photosensitizers[J]. Adv Healthc Mater, 2019, 8(5): e1801591. DOI:10.1002/adhm.201801591. [42] WANG S, WANG X, YU L M, et al. Progress and trends of photodynamic therapy: from traditional photosensitizers to AIE-based photosensitizers[J]. Photodiagnosis Photodyn Ther, 2021, 34: 102254. DOI:10.1016/j.pdpdt.2021.102254. [43] YIN Y, CHEN Z, YANG Y, et al. Thiophene-containing tetraphenylethene derivatives with different aggregation-induced emission(AIE)and mechanofluorochromic characteristics[J]. RSC Adv, 2019, 9(42): 24338-24343. DOI:10.1039/c9ra04611a. [44] CHEN K Q, ZHANG R Y, WANG Z M, et al. Structural modification orientated multifunctional AIE fluorescence probes: organelles imaging and effective photosensitizer for photodynamic therapy[J]. Adv Optical Mater, 2020, 8(2): 1901433. DOI:10.1002/adom.201901433. [45] CHEN Y, AI W, GUO X, et al. Mitochondria-targeted polydopamine nanocomposite with AIE photosensitizer for image-guided photodynamic and photothermal tumor ablation[J]. Small, 2019, 15(30): e1902352. DOI:10.1002/smll.201902352. [46] LI Y Y, PENG Q C, LI S J, et al. A multifunctional quinoxalin-based AIEgen used for fluorescent thermo-sensing and image-guided photodynamic therapy[J]. Sens Actuat B Chem, 2019, 301: 127139. DOI:10.1016/j.snb.2019.127139. [47] GAO H, BAO P, DAI S, et al. Far-red/near-infrared emissive(1, 3-dimethyl)barbituric acid-based AIEgens for high-contrast detection of metastatic tumors in the lung[J]. Chem Asian J, 2019, 14(6): 871-876. DOI:10.1002/asia.201801660. [48] ALAM P, HE W, LEUNG N L C, et al. Red AIE-active fluorescent probes with tunable organelle-specific targeting[J]. Adv Funct Mater, 2020, 30(10): 1909268. DOI:10.1002/adfm.201909268. [49] LIU J T, DU P, LIU T R, et al. A black phosphorus/manganese dioxide nanoplatform: oxygen self-supply monitoring, photodynamic therapy enhancement and feedback[J]. Biomaterials, 2019, 192: 179-188. DOI:10.1016/j.biomaterials.2018.10.018. [50] CHEN Q, LIANG C, SUN X, et al. H2O2-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay[J]. PNAS, 2017, 114(21): 5343-5348. DOI:10.1073/pnas.1701976114. [51] SALEHPOUR F, RASTA S H, MOHADDES G, et al. Therapeutic effects of 10-HzPulsed wave lasers in rat depression model: a comparison between near-infrared and red wavelengths[J]. Lasers Surg Med, 2016, 48(7): 695-705. DOI:10.1002/lsm.22542. [52] SALEHPOUR F, CASSANO P, ROUHI N, et al. Penetration profiles of visible and near-infrared lasers and light-emitting diode light through the head tissues in animal and human species: a review of literature[J]. Photobiomodul Photomed Laser Surg, 2019, 37(10): 581-595. DOI:10.1089/photob.2019.4676. [53] NÖTZLI H P, SWIONTKOWSKI M F, THAXTER S T, et al. Laser Doppler flowmetry for bone blood flow measurements: helium-neon laser light attenuation and depth of perfusion assessment[J]. J Orthop Res, 1989, 7(3): 413-424. DOI:10.1002/jor.1100070314. [54] DAI T, TEGOS G P, ZHIYENTAYEV T, et al. Photodynamic therapy for methicillin-resistant Staphylococcus aureus infection in a mouse skin abrasion model[J]. Lasers Surg Med, 2010, 42(1): 38-44. DOI:10.1002/lsm.20887. [55] LIU Y, QIN R, ZAAT S A J, et al. Antibacterial photodynamic therapy: overview of a promising approach to fight antibiotic-resistant bacterial infections[J]. J Clin Transl Res, 2015, 1(3): 140-167. [56] BARTOLOMEU M, ROCHA S, CUNHA Â, et al. Effect of photodynamic therapy on the virulence factors of staphylococcus aureus[J]. Front Microbiol, 2016, 7: 267. DOI:10.3389/fmicb.2016.00267. [57] HAJIM K I, SALIH D S, RASSAM Y Z. Laser light combined with a photosensitizer may eliminate methicillin-resistant strains of Staphylococcus aureus[J]. Lasers Med Sci, 2010, 25(5): 743-748. DOI:10.1007/s 10103-010-0803-z. [58] MALÁ Z, ZˇRSKÁ L, BAJGAR R, et al. The application of antimicrobial photodynamic inactivation on methicillin-resistant S. aureus and ESBL-producing K. pneumoniae using porphyrin photosensitizer in combination with silver nanoparticles[J]. Photodiagnosis Photodyn Ther, 2021, 33: 102140. DOI:10.1016/j.pdpdt.2020.102140. [59] XU Z, GAO Y, MENG S, et al. Mechanism and in vivo evaluation: photodynamic antibacterial chemotherapy of lysine-porphyrin conjugate[J]. Front Microbiol, 2016, 7: 242. DOI:10.3389/fmicb.2016.00242. [60] GARCEZ A S, KAPLAN M, JENSEN G J, et al. Effects of antimicrobial photodynamic therapy on antibiotic-resistant Escherichia coli[J]. Photodiagnosis Photodyn Ther, 2020, 32: 102029. DOI:10.1016/j. pdpdt.2020.102029. [61] ROSA L P, SILVA F C, NADER S A, et al. In vitro effectiveness of antimicrobial photodynamic therapy(APDT)using a 660nm laser and malachite green dye in Staphylococcus aureus biofilms arranged on compact and cancellous bone specimens[J]. Lasers Med Sci, 2014, 29(6): 1959-1965. DOI:10.1007/s10103-014-1613-5. [62] BANERJEE S, GHOSH D, VISHAKHA K, et al. Photodynamic antimicrobial chemotherapy(PACT)using riboflavin inhibits the mono and dual species biofilm produced by antibiotic resistant Staphylococcus aureus and Escherichia coli[J]. Photodiagnosis Photodyn Ther, 2020, 32: 102002. DOI:10.1016/j.pdpdt.2020.102002. [63] DOSREIS J A Jr, DOSSANTOS J N, BARRETO B S, et al. Photodynamic antimicrobial chemotherapy(PACT)in osteomyelitis induced by Staphylococcus aureus: Microbiological and histological study[J]. J Photochem Photobiol B Biol, 2015, 149: 235-242. DOI:10.1016/j.jphotobiol.2015.06.005. [64] 马金超,刘天盛,刘爱鹏,等.光动力抗微生物化学疗法修复骨髓炎模型兔的实验[J].中国组织工程研究, 2020, 24(8): 1254-1259. DOI:10.3969/j.issn.2095-4344.2480. [65] LINDBLOOM B J, JAMES E R, MCGARVEY W C. Osteomyelitis of the foot and ankle: diagnosis, epidemiology, and treatment[J]. Foot Ankle Clin, 2014, 19(3): 569-588. DOI:10.1016/j.fcl.2014.06.012. [66] FAGLIA E, CLERICI G, CAMINITI M, et al. Influence of osteomyelitis location in the foot of diabetic patients with transtibial amputation[J]. Foot Ankle Int, 2013, 34(2): 222-227. DOI:10.1177/1071100712467436. [67] TARDIVO J P, ADAMI F, CORREA J A, et al. A clinical trial testing the efficacy of PDT in preventing amputation in diabetic patients[J]. Photodiagnosis Photodyn Ther, 2014, 11(3): 342-350. DOI:10.1016/j.pdpdt.2014.04.007. [68] TARDIVO J P, SERRANO R, ZIMMERMANN L M, et al. Is surgical debridement necessary in the diabetic foot treated with photodynamic therapy? [J]. Diabet Foot Ankle, 2017, 8(1): 1373552. DOI:10.1080/2000625 X.2017.1373552. [69] GARCIA V G, LIMA M A, OKAMOTO T, et al. Effect of photodynamic therapy on the healing of cutaneous third-degree-burn: histological study in rats[J]. Lasers Med Sci, 2010, 25(2): 221-228. DOI:10.1007/s10103-009-0694-z. ( |
[1] | ZHAO Jianxi, PANG Jingwen, TIAN Xiang, YAN Xinghan, ZHANG Zhiming, ZHAO Zhanjuan. Application and mechanism of photodynamic therapy in the treatment of diabetic foot [J]. Journal of Hebei University(Natural Science Edition), 2023, 43(2): 188-196. |
[2] | ZHAO Zhanjuan, MA Yingying, LIU Yameng, YANG Yanxi, SHANG Yazhen, ZHAO Jianxi. Photodynamic antibacterial and antitumor activity of photosensitizer T1 [J]. Journal of Hebei University (Natural Science Edition), 2019, 39(5): 522-528. |
[3] | ZHAO Zhanjuan,GENG Wenyi,FAN Ziyu,HONG Ge,LIU Tianjun. In vitro study on antimicrobial activity of new water-soluble porphyrin photosensitizers [J]. Journal of Hebei University (Natural Science Edition), 2017, 37(4): 393-399. |
[4] | ZHAO Zhanjuan,LI Shijie,XU Zehua,SHANG Yazhen,ZHAO Jianxi. Research progress of photodynamic therapy for drug-resistant bacteria [J]. Journal of Hebei University (Natural Science Edition), 2015, 35(6): 657-666. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||