[1] OKELLO E J, MATHER J. Comparative kinetics of acetyl- and butyryl-Cholinesterase inhibition by green tea catechins|relevance to the symptomatic treatment of Alzheimers disease[J]. Nutrients, 2020,12(4). DOI: 10.3390/nu12041090. [2] JAHN H. Memory loss in Alzheimers disease[J]. Dialogues in Clinical Neuroscience, 2013,15(4):445-454. DOI: 10.31887/DCNS.2013.15.4/hjahn. [3] FORSTL H, KURZ A. Clinical features of Alzheimers disease[J]. European Archives of Psychiatry and Clinical Neuroscience, 1999,249(6):288-290. DOI: 10.1007/s004060050101. [4] TAHAMI M A, BYRNES M J, WHITE L A, et al. The humanistic and economic burden of Alzheimers disease[J]. Neurology and Therapy, 2022,11(2):525-551. DOI: 10.1007/s40120-022-00335-x. [5] SCHNEIDER L S. A critical review of cholinesterase inhibitors as a treatment modality in Alzheimers disease[J]. Dialogues in Clinical Neuroscience, 2000,2(2):111-128. DOI: 10.31887/DCNS.2000.2.2/lschneider. [6] BARAGE S H, SONAWANE K D. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimers disease[J]. Neuropeptides, 2015,52:1-18. DOI: 10.1016/j.npep.2015.06.008. [7] MACCIONI R B, FARIAS G, MORALES I, et al. The revitalized tau hypothesis on Alzheimers disease[J]. Archives of Medical Research, 2010,41(3):226-231. DOI: 10.1016/j.arcmed.2010.03.007. [8] BAI R, GUO J, YE X Y, et al. Oxidative stress: The core pathogenesis and mechanism of Alzheimers disease[J]. Ageing Research Reviews, 2022,77:101619. DOI: 10.1016/j.arr.2022.101619. [9] AYTON S, LEI P, BUSH A I. Metallostasis in Alzheimers disease[J]. Free Radical Biology & Medicine, 2013,62:76-89. DOI: 10.1016/j.freeradbiomed.2012.10.558. [10] HENEKA M T, OBANION M K, TERWEL D, et al. Neuroinflammatory processes in Alzheimers disease[J]. Journal of Neural Transmission, 2010,117(8):919-947. DOI: 10.1007/s00702-010-0438-z. [11] LIU Z, ZHANG A, SUN H, et al. Two decades of new drug discovery and development for Alzheimers disease[J]. RSC Advances, 2017,7(10):6046-6058. DOI: 10.1039/C6RA26737H. [12] WATKINS P B, ZIMMERNAN H J, KNAPP M J, et al. Hepatotoxic effects of tacrine administration in patients with Alzheimers disease[J]. JAMA, 1994,271(13):992-998. DOI: 10.1001/jama.1994.03510370044030. [13] JU Y, TAM K Y. Pathological mechanisms and therapeutic strategies for Alzheimers disease[J]. Neural Regeneration Research, 2022,17(3):543-549. DOI: 10.4103/1673-5374.320970. [14] DIGHE S N, DEORA G S, DE LA MORA E, et al. Discovery and structure-activity relationships of a highly selective butyrylcholinesterase inhibitor by structure-based virtual screening[J]. Journal of Medicinal Chemistry, 2016,59(16):7683-7689. DOI: 10.1021/acs.jmedchem.6b00356. [15] LI Q, XING S, CHEN Y, et al. Discovery and biological evaluation of a novel highly potent selective butyrylcholinesterase inhibitor[J]. Journal of Medicinal Chemistry, 2020,63(17):10030-10044. DOI: 10.1021/acs.jmedchem.0c01129. [16] RANA M, PAREEK A, BHARDWAJ S, et al. Aryldiazoquinoline based multifunctional small molecules for modulating Aβ42 aggregation and cholinesterase activity related to Alzheimers disease[J]. RSC Advances, 2020,10(48):28827-28837. DOI: 10.1039/D0RA05172A. [17] SANG Z, WANG K, DONG J, et al. Alzheimers disease: Updated multi-targets therapeutics are in clinical and in progress[J]. European Journal of Medicinal Chemistry, 2022,238:114464. DOI: 10.1016/j.ejmech.2022.114464. [18] GUMUS M, YAKAN M, KOCA I. Recent advances of thiazole hybrids in biological applications[J]. Future Medicinal Chemistry, 2019,11(15):1979-1998. DOI: 10.4155/fmc-2018-0196. [19] 冯媛媛,宋梦秋,武文龙,等.2-苯基噻唑-香豆素衍生物的合成与抗肿瘤活性研究[J].化学研究与应用, 2022,34(6):1362-1368. DOI: 10.3969/j.issn.1004-1656.2022.06.018. [20] 马太贵,李心怡,周阿康, 等.芳基噻唑胺类化合物合成及其抑菌活性研究[J].化学研究与应用, 2023,35(1):107-112. DOI: 10.3969/j.issn.1004-1656.2023.01.014. [21] 刘大川,吴成柱,霍强,等.二甲吡唑联苯并噻唑的合成及抗惊厥活性研究[J].广州化工, 2019,47(12):53-56. DOI: 10.3969/j.issn.1001-9677.2019.12.023. [22] 张强强,刘新泳.新型4-噻唑烷酮衍生物及其抗病毒活性研究进展[J].药学进展, 2012,36(9):394-399. DOI: 10.3969/j.issn.1001-5094.2012.09.002. [23] QIAN J J, ZOU J P, LIU S M, et al. Synthesis, characterization, crystal structure, and cholinesterase inhibitory activity of 2-phenylthiazole derivatives[J]. Journal of Molecular Structure, 2023,1282:135248. DOI: 10.1016/j.molstruc.2023.135248. [24] MATSUNAGA Y, TANAKA T, YOSHINAGA K, et al. Acotiamide hydrochloride(Z-338), a new selective acetylcholinesterase inhibitor, enhances gastric motility without prolonging QT interval in dogs: comparison with cisapride, itopride, and mosapride[J]. Journal of Pharmacology and Experimental Therapeutic, 2011,336(3):791-800. DOI: 10.1124/jpet.110.174847. [25] 张蝶.地黄饮子对APP/PS1小鼠突触功能及胆碱能系统的保护机制[D].北京中医药大学, 2019. [26] ZOU J P, QIAN J J, LIU S M, et al. Design, synthesis, biological evaluation and molecular dynamics simulations study of genistein-O-1,3,5-Triazine derivatives as multifunctional anti-alzheimer agents[J]. ChemistrySelect, 2022,7(47):e202203997. DOI: 10.1002/slct.202203997. [27] 栾剑,杨心悦.阿尔茨海默病的发病机制和药物研发进展[J].中国合理用药探索, 2022,19(5):11-16. DOI: 10.3969/j.issn.2096-3327.2022.05.003. [28] XU Y, JIAN M M, HAN C, et al. Design, synthesis and evaluation of new 4-arylthiazole-2-amine derivatives as acetylcholinesterase inhibitors[J]. Bioorganic & Medicinal Chemistry Letters, 2020,30(6):126985. DOI: 10.1016/j.bmcl.2020.126985. [29] 马正月,杨琦,张元功,等.N-酰基-4-苯基噻唑-2-胺类衍生物的设计、合成及其乙酰胆碱酯酶抑制活性研究[J].药学学报,2014,49(6):813-818.DOI:10.16438/j.0513-4870.2014.06.019. [30] SONMEZ F,ZENGIN KURT B,GAZIOGLU I, et al. Design synthesis and docking study of novel coumarin ligands as potential selective acetylcholinesterase inhibitors[J].Journal of Enzymeinhibition and Medicinal Chemistry, 2016, 32(1): 285-297.DOI: 10.1080/14756366.2016.1250753. [31] YIN L, CHENG F C, LI Q X, et al. Synthesis and biological evaluation of novel C1-glycosyl thiazole derivatives as acetylcholinesterase inhibitors[J]. Journal of chemical research, 2016,40(9):545-548. DOI: 10.3184/174751916X14711768865726. [32] WANG Y X, LIU S H, SHAO Z B, et al. Synthesis and anti-acetylcholinesterase activities of novel glycosyl coumarylthiazole derivatives[J]. Journal of chemical research, 2021,45(5-6):359-364. DOI: 10.1177/1747519820948358. [33] LIU H, QU Y, WANG X. Amyloid β-targeted metal complexes for potential applications in Alzheimers disease[J]. Future Medicinal Chemistry, 2018,10(6):679-701. DOI: 10.4155/fmc-2017-0248. [34] VALENSIN D, GABBIANI C, MESSORI L. Metal compounds as inhibitors of β-amyloid aggregation. Perspectives for an innovative metallotherapeutics on Alzheimers disease[J]. Coordination Chemistry Reviews, 2012,256(19-20):2357-2366. DOI: 10.1016/j.ccr.2012.04.010. [35] HUFFMAN S E, YAWSON G K, FISHER S S, et al. Ruthenium(iii)complexes containing thiazole-based ligands that modulate amyloid-β aggregation[J]. Metallomics, 2020,12(4):491-503. DOI: 10.1039/d0mt00054j. [36] ALVAREZ A, OPAZO C, ALARCON R, et al. Acetylcholinesterase promotes the aggregation of amyloid-beta-peptide fragments by forming a complex with the growing fibrils[J]. Journal of Molecular Biology, 1997,272(3):348-361. DOI: 10.1006/jmbi.1997.1245. [37] SAG ˇLIK B N, LEVENT S, OSMANIYE D, et al. Design, synthesis, and biological activity evaluation of new eonepezil-like compounds bearing thiazole ring for the treatment of Alzheimer’s disease[J]. Crystals, 2020,10(8):637. DOI: 10.3390/cryst10080637. [38] KARACA S, OSMANIYE D, SAGˇLIK B N, et al. Synthesis of novel benzothiazole derivatives and investigation of their enzyme inhibitory effects against Alzheimers disease[J]. RSC Advances, 2022,12(36):23626-23636. DOI: 10.1039/D2RA03803J. [39] MEKKY A E M, SANAD S M H, El-IDREESY T T. New thiazole and thiazole-chromene hybrids possessing morpholine units: Piperazine-mediated one-pot synthesis of potential acetylcholinesterase inhibitors[J]. Synthetic Communications, 2021,51(21):3332-3344. DOI: 10.1080/00397911.2021.1970774. [40] GHOTBI G, MAHDAVI M, NAJAFI Z, et al. Design, synthesis, biological evaluation, and docking study of novel dual-acting thiazole-pyridiniums inhibiting acetylcholinesterase and beta-amyloid aggregation for Alzheimers disease[J]. Bioorganic Chemistry, 2020,103:104186. DOI: 10.1016/j.bioorg.2020.104186. [41] KUMAR H, GOYAL A, KUMAR N, et al. Design, Synthesis, and biological evaluation of pyrazolo-benzothiazole derivatives as a potential therapeutic agent for the treatment of Alzheimer’s disease[J]. Medicinal Chemistry Research, 2022,31(11):1931-1947. DOI: 10.1007/s00044-022-02953-4. ( |