[1] ZHU Y H, XIAN X M, WANG Z Z, et al. Research progress on the relationship between atherosclerosis and inflammation[J]. Biomolecules, 2018, 8(3): 80. DOI: 10.3390/biom8030080. [2] CHEN W J, LI L, WANG J, et al. The ABCA1-efferocytosis axis: a new strategy to protect against atherosclerosis[J]. Clin Chim Acta, 2021, 518: 1-8. DOI: 10.1016/j.cca.2021.02.025. [3] MOORE K J, SHEEDY F J, FISHER E A. Macrophages in atherosclerosis: a dynamic balance[J]. Nat Rev Immunol, 2013, 13(10): 709-721. DOI: 10.1038/nri3520. [4] KHATANA C, SAINI N K, CHAKRABARTI S, et al. Mechanistic insights into the oxidized low-density lipoprotein-induced atherosclerosis[J]. Oxid Med Cell Longev, 2020, 2020: 5245308. DOI: 10.1155/2020/5245308. [5] GOLDSTEIN J L, BROWN M S. A century of cholesterol and coronaries: from plaques to genes to statins[J]. Cell, 2015, 161(1): 161-172. DOI: 10.1016/j.cell.2015.01.036. [6] LI G M, ZHANG C L, RUI R P, et al. Bioinformatics analysis of common differential genes of coronary artery disease and ischemic cardiomyopathy[J]. Eur Rev Med Pharmacol Sci, 2018, 22(11): 3553-3569. DOI: 10.26355/eurrev_201806_15182. [7] LIN X Y, OUYANG S Y, ZHI C X, et al. Focus on ferroptosis, pyroptosis, apoptosis and autophagy of vascular endothelial cells to the strategic targets for the treatment of atherosclerosis[J]. Arch Biochem Biophys, 2022, 715: 109098. DOI: 10.1016/j.abb.2021.109098. [8] SPARTALIS M, SPARTALIS E, ATHANASIOU A, et al. The Role of the endothelium in premature atherosclerosis: molecular mechanisms[J]. Curr Med Chem, 2020, 27(7): 1041-1051. DOI: 10.2174/0929867326666190911141951. [9] CHISTIAKOV D A, BOBRYSHEV Y V, OREKHOV A N. Macrophage-mediated cholesterol handling in atherosclerosis[J]. J Cell Mol Med, 2016, 20(1): 17-28. DOI: 10.1111/jcmm.12689. [10] MA S Z, SUN W X, GAO L, et al. Therapeutic targets of hypercholesterolemia: HMGCR and LDLR[J]. Diabetes Metab Syndr Obes, 2019, 12: 1543-1553. DOI: 10.2147/DMSO.S219013. [11] GU J, ZHU N, LI H F, et al. Cholesterol homeostasis and cancer: a new perspective on the low-density lipoprotein receptor[J]. Cell Oncol(Dordr), 2022, 45(5): 709-728. DOI: 10.1007/s13402-022-00694-5. [12] LUO J, YANG H Y, SONG B L. Mechanisms and regulation of cholesterol homeostasis[J]. Nat Rev Mol Cell Biol, 2020, 21(4): 225-245. DOI: 10.1038/s41580-019-0190-7. [13] LEBEAU P F, BYUN J H, PLATKO K, et al. Caffeine blocks SREBP2-induced hepatic PCSK9 expression to enhance LDLR-mediated cholesterol clearance[J]. Nat Commun, 2022, 13(1): 770. DOI: 10.1038/s41467-022-28240-9. [14] ARIDA A, LEGAKI A I, KRAVVARITI E, et al. PCSK9/LDLR System and rheumatoid arthritis-related atherosclerosis[J]. Front Cardiovasc Med, 2021, 8: 738764. DOI: 10.3389/fcvm.2021.738764. [15] LUU W, ZERENTURK E J, KRISTIANA I, et al. Signaling regulates activity of DHCR24, the final enzyme in cholesterol synthesis[J]. J Lipid Res, 2014, 55(3): 410-420. DOI: 10.1194/jlr.M043257. [16] LUU W, HART-SMITH G, SHARPE L J, et al. The terminal enzymes of cholesterol synthesis, DHCR24 and DHCR7, interact physically and functionally[J]. J Lipid Res, 2015, 56(4): 888-897. DOI: 10.1194/jlr.M056986. [17] DAIMIEL L A, FERNÁNDEZ-SUÁREZ M E, RODRÍGUEZ-ACEBES S, et al. Promoter analysis of the DHCR24(3β-hydroxysterol Δ(24)-reductase)gene: characterization of SREBP(sterol-regulatory-element-binding protein)-mediated activation[J]. Biosci Rep, 2012, 33(1): 57-69. DOI: 10.1042/BSR20120095. [18] PRABHU A V, SHARPE L J, BROWN A J. The sterol-based transcriptional control of human 7-dehydrocholesterol reductase(DHCR7): Evidence of a cooperative regulatory program in cholesterol synthesis[J]. BBA Mol Cell Biol Lipids, 2014, 1841(10): 1431-1439. DOI: 10.1016/j.bbalip.2014.07.006. [19] QIN Y L, HOU Y X, LIU S Q, et al. A novel long non-coding RNA lnc030 maintains breast cancer stem cell stemness by stabilizing SQLE mRNA and increasing cholesterol synthesis[J]. Adv Sci(Weinh), 2020, 8(2): 2002232. DOI: 10.1002/advs.202002232. [20] BROWN M S, RADHAKRISHNAN A, GOLDSTEIN J L. Retrospective on cholesterol homeostasis: The central role of scap[J]. Annu Rev Biochem, 2018, 87: 783-807. DOI: 10.1146/annurev-biochem-062917-011852. [21] NAKAMURA K, MORI F, TANJI K, et al. Isopentenyl diphosphate isomerase, a cholesterol synthesizing enzyme, is localized in Lewy bodies[J]. Neuropathology, 2015, 35(5): 432-440. DOI 10.1111/neup.12204. [22] ZHANG L W, MCCABE T, CONDRA J H, et al. An anti-PCSK9 antibody reduces LDL-cholesterol on top of a statin and suppresses hepatocyte SREBP-regulated genes[J]. Int J Biol Sci, 2012, 8(3): 310-327. DOI: 10.7150/ijbs.3524. [23] COMAN D, VISSERS L E L M, RILEY L G, et al. Squalene synthase deficiency: clinical, biochemical, and molecular characterization of a defect in cholesterol biosynthesis[J]. Am J Hum Genet, 2018, 103(1): 125-130. DOI: 10.1016/j.ajhg.2018.05.004. [24] DONG X, ZHU Y, WANG S, et al. Bavachinin inhibits cholesterol synthesis enzyme FDFT1 expression via AKT/mTOR/SREBP-2 pathway[J]. Int Immunopharmacol, 2020, 88: 106865. DOI: 10.1016/j.intimp.2020.106865. [25] NAKANISHI T, TANAKA R, TONAI S, et al. LH Induces De Novo cholesterol biosynthesis via SREBP activation in granulosa cells during ovulation in female mice[J]. Endocrinology, 2021, 162(11): bqab166. DOI: 10.1210/endocr/bqab166. [26] ERSHOV P, KALUZHSKIY L, MEZENTSEV Y, et al. Enzymes in the cholesterol synthesis pathway: interactomics in the cancer context[J]. Biomedicines, 2021, 9(8): 895. DOI: 10.3390/biomedicines9080895. [27] XIN Y Z, LI C P, GUO Y, et al. RNA-Seq analysis reveals a negative role of MSMO1 with a synergized NSDHL expression during adipogenesis of 3T3-L1[J]. Biosci Biotechnol Biochem, 2019, 83(4): 641-652. DOI: 10.1080/09168451.2018.1559719. [28] XIE D, SONG L J, XIANG D Y, et al. Salvianolic acid A alleviates atherosclerosis by inhibiting inflammation through trc8-mediated 3-hydroxy-3-methylglutaryl-coenzyme A reductase degradation[J]. Phytomedicine, 2023, 112: 154694. DOI: 10.1016/j.phymed.2023.154694. [29] SONG F, LI J Z, WU Y, et al. Ubiquitinated ligation protein NEDD4L participates in MiR-30a-5p attenuated atherosclerosis by regulating macrophage polarization and lipid metabolism[J]. Mol Ther Nucleic Acids, 2021, 26: 1303-1317. DOI: 10.1016/j.omtn.2021.10.030. ( |