[1] ADOMAVICIUS G, TUZHILIN A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions[J]. IEEE Trans Knowl Data Eng, 2005, 17(6): 734-749. DOI: 10.1109/TKDE.2005.99. [2] VERBERT K, MANOUSELIS N, OCHOA X, et al. Context-aware recommender systems for learning: a survey and future challenges[J]. IEEE Trans Learn Technol, 2012, 5(4): 318-335. DOI: 10.1109/TLT.2012.11. [3] MOONEY R J, ROY L. Content-based book recommending using learning for text categorization[C] //Proceedings of the fifth ACM conference on Digital libraries, June 2-7, 2000, San Antonio, Texas, USA. ACM, 2000: 195-204. DOI: 10.1145/336597.336662. [4] BREESE J S, HECKERMAN D, KADIE C. Empirical analysis of predictive algorithms for collaborative filtering[J]. ArXiv Preprint ArXiv:1301.7363, 2013.DOI:10.48550/arXiv.1301.7363. [5] BALABANOVIC' M, SHOHAM Y. Fab[J]. Commun ACM, 1997, 40(3): 66-72. DOI: 10.1145/245108.245124. [6] 黄立威,江碧涛,吕守业,等.基于深度学习的推荐系统研究综述[J].计算机学报, 2018, 41(7): 1619-1647. DOI: 10.11897/SP.J.1016.2018.01619. [7] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521: 436-444. DOI: 10.1038/nature14539. [8] WU S W, SUN F, ZHANG W T, et al. Graph neural networks in recommender systems: a survey[J]. ACM Comput Surv, 2022, 55(5): 97. DOI: 10.1145/3535101. [9] 林晓,周云翔,李大志,等.利用多尺度特征联合注意力模型的图像修复[J].计算机辅助设计与图形学学报, 2022, 34(8): 1260-1271. DOI: 10.3724/SP.J.1089.2022.19172. [10] 柴玉梅,员武莲,王黎明,等.基于双注意力机制和迁移学习的跨领域推荐模型[J].计算机学报, 2020, 43(10): 1924-1942. DOI: 10.11897/SP.J.1016.2020.01924. [11] KIPF T N, WELLING M. Variational graph auto-encoders[J]. ArXiv Preprint ArXiv:1611.07308,2016.DOI:10.48550/arXiv.1611.07308. [12] SALHA G, HENNEQUIN R, VAZIRGIANNIS M. Keep it simple: Graph autoencoders without graph convolutional networks[J]. ArXiv Preprint ArXiv:1910.00942, 2019.DOI:10.48550/arXiv.1910.00942. [13] LI I, FABBRI A, HINGMIRE S, et al. R-vgae: Relational-variational graph autoencoder for unsupervised prerequisite chain learning[J]. ArXiv Preprint ArXiv:2004.10610, 2020.DOI: 10.48550/arXiv.2004.10610. [14] VELI(ˇoverC)KOVIC' P,CUCURULL G,CASANOVA A,et al.Graph attention networks[J]. ArXiv Preprint ArXiv:1710.10903,2017.DOI: 10.48550/arXiv.1710.10903. [15] MA C, KANG P, WU B, et al. Gated attentive-autoencoder for content-aware recommendation[C] //Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, February 11 - 15, 2019, Melbourne VIC, Australia. ACM, 2019: 519-527. DOI: 10.1145/3289600.3290977. [16] YU J L, YIN H Z, LI J D, et al. Enhancing social recommendation with adversarial graph convolutional networks[J]. IEEE Trans Knowl Data Eng, 2022, 34(8): 3727-3739. DOI: 10.1109/TKDE.2020.3033673. [17] XU J X, ZHU Z L, ZHAO J X, et al. Gemini: a novel and universal heterogeneous graph information fusing framework for online recommendations[C] //Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, July 6 - 10, 2020, Virtual Event, CA, USA. ACM, 2020: 3356-3365. DOI: 10.1145/3394486.3403388. [18] WANG X, WANG R J, SHI C, et al. Multi-component graph convolutional collaborative filtering[J]. Proc AAAI Conf Artif Intell, 2020, 34(4): 6267-6274. DOI: 10.1609/aaai.v34i04.6094. [19] BERG R, KIPF T N, WELLING M. Graph convolutional matrix completion[J]. ArXiv Preprint ArXiv:1706.02263,2017.DOI: 10.48550/arXiv.1706.02263. [20] CANDÈS E J, RECHT B. Exact matrix completion via convex optimization[J]. Found Comput Math, 2009, 9(6): 717-772. DOI: 10.1007/s10208-009-9045-5. [21] MONTI F, BRONSTEIN M M, BRESSON X. Geometric matrix completion with recurrent multi-graph neural networks[C] //Proceedings of the 31st International Conference on Neural Information Processing Systems, December 4-9, 2017, Long Beach, California, USA. ACM, 2017: 3700-3710. DOI: 10.5555/3294996.3295127. [22] ZHENG Y, TANG B S, DING W K, et al. A neural autoregressive approach to collaborative filtering[C] //Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume 48, June 19 - 24, 2016, New York, NY, USA. ACM, 2016: 764-773. DOI: 10.5555/3045390.3045472. [23] LI Q, ZHENG X, WU X. Collaborative autoencoder for recommender systems[J]. ArXiv E-prints, 2017.DOI:10.1145/3097983.3098077. ( |