[1] SANTORO C, SEROV A, ARTYUSHKOVA K, et al. Platinum group metal-free oxygen reduction electrocatalysts used in neutral electrolytes for bioelectrochemical reactor applications [J]. Curr Opin Electrochem, 2020, 23:106-113. DOI: 10.1016/j.coelec.2020.06.003. [2] PUSHKAR P, KUMAR MUNGRAY A. Electrochemical evaluation of lab-scale chamber benthic microbial fuel cell [J]. Sustain Energy Technol Assess, 2021, 48: 101655. DOI: 10.1016/j.seta.2021.101655. [3] CHEN J, YANG J, ZHAO K, et al. Enhancing bioelectrochemical performance of two-dimensional material attached by covalent/metal organic frameworks as cathode catalyst for microbial fuel cells [J]. Bioresour Technol, 2022,360: 127537.DOI: 10.1016/j.biortech.2022.127537. [4] JUMA AL BALUSHI N, NAYAK J K, RAHMAN S, et al. A Comprehensive study on air-cathode limitations and its mitigation strategies in microbial desalination cell—A review [J]. Energies, 2022, 15(20):7459. DOI: 10.3390/en15207459. [5] LU H, JIANG Y, XIAO G, et al. Nitrogen-doped porous carbon fiber with enriched Fe2N sites: Synthesis and application as efficient electrocatalyst for oxygen reduction reaction in microbial fuel cells [J]. J Colloid Interface Sci, 2022, 616: 539-547. DOI: 10.1016/j.jcis.2022.02.106. [6] LEE H, KIM M J, LIM T, et al. A facile synthetic strategy for iron, aniline-based non-precious metal catalysts for polymer electrolyte membrane fuel cells [J]. Sci Rep, 2017, 7(1):5396-5404. DOI: 10.1038/s41598-017-05830-y. [7] CHEN R, ZHANG J, ZHANG K, et al. In-situ degradation of organic pollutants by bioelectrical-Fenton reaction with a metal-free polyaniline-derived nitrogen-doped carbon nanofibre electrode [J]. J Alloys Compd, 2022, 901: 163710. DOI: 10.1016/j.jallcom.2022.163710. [8] DHILLON S K, KUNDU P P. Polyaniline interweaved iron embedded in urea-formaldehyde resin-based carbon as a cost-effective catalyst for power generation in microbial fuel cell [J]. Chem Eng J, 2022, 431: 133341. DOI: 10.1016/j.cej.2021.133341. [9] LIU J, WEI L, CHU C, et al. Tofu gel-derived nitrogen and trace iron co-doped porous carbon as highly efficient air-cathode electrocatalyst for microbial fuel cells [J]. J Power Sources, 2022, 527: 230960. DOI: 10.1016/j.jpowsour.2021.230960. [10] LIU S H, YOU S S, LIN C W, et al. Optimizing biochar and conductive carbon black composites as cathode catalysts for microbial fuel cells to improve isopropanol removal and power generation [J]. Renew Energy, 2022, 199: 1318-1328. DOI: 10.1016/j.renene.2022.09.069. [11] MA H, ZHENG Y, XIAN J, et al. A light-enhanced α-FeOOH nanowires/polyaniline anode for improved electricity generation performance in microbial fuel cells [J]. Chemosphere, 2022, 296: 133394. DOI: 10.1016/j.chemosphere.2022.133994. [12] MUHYUDDIN M, TESTA D, LORENZI R, et al. Iron-based electrocatalysts derived from scrap tires for oxygen reduction reaction: Evolution of synthesis-structure-performance relationship in acidic, neutral and alkaline media [J]. Electrochim Acta, 2022, 433: 141254. DOI: 10.1016/j.electacta.2022.141254. [13] PRAKASH O, MUNGRAY A, KUMAR MUNGRAY A, et al. A novel design for the development of deployable benthic microbial fuel cells using PPy-Fe2O3 coated multi-anode system [J]. Sustain Energy Technol Assess, 2022, 52: 102049. DOI: 10.1016/j.seta.2022.102049. [14] SADEGH HASSANI S, SAMIEE L, RASHIDI A, et al. Comparative study of various preparation methods of metal-free N and S co-doped porous graphene as an ORR catalyst in alkaline solution [J]. J Chemi Sci, 2022, 134(1):27-38. DOI: 10.1007/s12039-021-02018-w. [15] SUN R M, WU R Z, LI X S, et al. Well entrapped platinum-iron nanoparticles on three-dimensional nitrogen-doped ordered mesoporous carbon as highly efficient and durable catalyst for oxygen reduction and zinc-air battery [J]. J Colloid Interface Sci, 2022, 621: 275-284. DOI: 10.1016/j.jcis.2022.04.043. [16] WANG D, LIU H, CAO Z, et al. Ordered porous nitrogen-doped carbon with atomically dispersed FeN4 for efficient oxygen reduction reaction in microbial fuel cell [J]. Sci Total Environ, 2022, 838: 156186. DOI: 10.1016/j.scitotenv.2022.156186. [17] ZHANG X, LIN Z, SU W, et al.High-efficiency power amplification of microbial fuel cell by modifying cathode with iron-incorporated thermalized covalent organic framework [J]. App Surf Sci, 2022, 592: 153278. DOI: 10.1016/j.apsusc.2022.153278. [18] AHMAD A, ALSHAMMARI M B, IBRAHIM M N M. Impact of self-fabricated graphene-metal oxide composite anodes on metal degradation and energy generation via a microbial fuel cell [J]. Processes, 2023, 11(1): 163. DOI: 10.3390/pr11010163. [19] CHEN J, YANG J, TIAN J, et al. A pathway for promoting bioelectrochemical performance of microbial fuel cell by synthesizing graphite carbon nitride doped on single atom catalyst copper as cathode catalyst [J]. Bioresour Technol, 2023, 372: 128677. DOI: 10.1016/j.biortech.2023.128677. [20] GUO S, LIU Y, SUN Y, et al. Heterostructure-induced enhanced oxygen catalysis behavior based on metal cobalt coupled with compound anchored on N-doped carbon nanofiber for microbial fuel cell [J]. J Colloid Interface Sci, 2023, 636: 305-316. DOI: 10.1016/j.jcis.2023.01.013. [21] KOLUBAH P D, MOHAMED H O, AYACH M, et al. W2N-MXene composite anode catalyst for efficient microbial fuel cells using domestic wastewater [J]. Chem Eng J, 2023,401: 141821. DOI: 46110.1016/j.cej.2023.141821. ( |