[1] DUZE S T, MARIMANI M, PATEL M. Tolerance of Listeria monocytogenes to biocides used in food processing environments[J]. Food Microbiol, 2021, 97: 103758. DOI: 10.1016/j.fm.2021.103758. [2] DISSON O, MOURA A, LECUIT M. Making sense of the biodiversity and virulence of Listeria monocytogenes[J]. Trends Microbiol, 2021, 29(9): 811-822. DOI: 10.1016/j.tim.2021.01.008. [3] VALENTI M, RANGANATHAN N, MOORE L S, et al. Listeria monocytogenes infections: presentation, diagnosis and treatment[J]. Br J Hosp Med, 2021, 82(10): 1-6. DOI: 10.12968/hmed.2021.0107. [4] HANES R M, HUANG Z. Investigation of antimicrobial resistance genes in Listeria monocytogenes from 2010 through to 2021[J]. Int J Environ Res Public Health, 2022, 19(9): 5506. DOI: 10.3390/ijerph19095506. [5] ELSAYED M E, ABD EL-HAMID M I, EL-GEDAWY A, et al. New insights into Listeria monocytogenes antimicrobial resistance, virulence attributes and their prospective correlation[J]. Antibiotics, 2022, 11(10): 1447. DOI: 10.3390/antibiotics11101447. [6] CUI X D, ZHANG J K, SUN Y W, et al. Synergistic antibacterial activity of baicalin and EDTA in combination with colistin against colistin-resistant Salmonella[J]. Poult Sci, 2023, 102(2): 102346. DOI: 10.1016/j.psj.2022.102346. [7] SONG L J, ZHU S M, LIU C, et al. Baicalin triggers apoptosis, inhibits migration, and enhances anti-tumor immunity in colorectal cancer via TLR4/NF-κB signaling pathway[J]. J Food Biochem, 2022, 46(3): e13703. DOI: 10.1111/jfbc.13703. [8] GAO A J, TANG H X, ZHANG Q, et al. Mst1/2-ALK promotes NLRP3 inflammasome activation and cell apoptosis during Listeria monocytogenes infection[J]. J Microbiol, 2021, 59(7): 681-692. DOI: 10.1007/s12275-021-0638-2. [9] LI D Y, WU M H. Pattern recognition receptors in health and diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 291. DOI: 10.1038/s41392-021-00687-0. [10] FU J, WU H. Structural mechanisms of NLRP3 inflammasome assembly and activation[J]. Annu Rev Immunol, 2023, 41: 301-316. DOI: 10.1146/annurev-immunol-081022-021207. [11] CAI B S, ZHAO J, ZHANG Y L, et al. USP5 attenuates NLRP3 inflammasome activation by promoting autophagic degradation of NLRP3[J]. Autophagy, 2022, 18(5): 990-1004. DOI: 10.1080/15548627.2021.1965426 [12] HANG Y Y, TAN L, CHEN Q, et al. E3 ubiquitin ligase TRIM24 deficiency promotes NLRP3/caspase-1/IL-1β-mediated pyroptosis in endometriosis[J]. Cell Biol Int, 2021, 45(7): 1561-1570. DOI: 10.1002/cbin.11592. [13] ZHANG S Y, GUAN X M, LIU W, et al. YTHDF1 alleviates sepsis by upregulating WWP1 to induce NLRP3 ubiquitination and inhibit caspase-1-dependent pyroptosis[J]. Cell Death Discov, 2022, 8(1): 244. DOI: 10.1038/s41420-022-00872-2. [14] TENG J F, MEI Q B, ZHOU X G, et al. Polyphyllin VI induces caspase-1-mediated pyroptosis via the induction of ROS/NF-κB/NLRP3/GSDMD signal axis in non-small cell lung cancer[J]. Cancers, 2020, 12(1): 193. DOI: 10.3390/cancers12010193. [15] LYU H P, NI H Z, HUANG J Y, et al. VX-765 prevents intestinal ischemia-reperfusion injury by inhibiting NLRP3 inflammasome[J]. Tissue Cell, 2022, 75: 101718. DOI: 10.1016/j.tice.2021.101718. [16] SCHLEE M, HARTMANN G. The chase for the RIG-I ligand - recent advances[J]. Mol Ther, 2010, 18(7): 1254-1262.DOI: 10.1038/mt.2010.90. [17] ZHU H, ZHAO M, CHANG C, et al. The complex role of AIM2 in autoimmune diseases and cancers[J]. Immun Inflamm Dis, 2021, 9(3): 649-665. DOI: 10.1002/iid3.443. [18] BARNETT K C, LI S, LIANG K, et al. A 360° view of the inflammasome: Mechanisms of activation, cell death, and diseases[J]. Cell, 2023, 186(11): 2288-2312. DOI: 10.1016/j.cell.2023.04.025. ( |