Journal of Hebei University(Natural Science Edition) ›› 2025, Vol. 45 ›› Issue (5): 507-519.DOI: 10.3969/j.issn.1000-1565.2025.05.007
Previous Articles Next Articles
DING Chenyu, DU Wang, LI Yongqi, CHEN Lizheng, ZHANG Yongquan, WANG Hongjie, LI Hui
Received:
2024-12-10
Published:
2025-09-18
CLC Number:
DING Chenyu, DU Wang, LI Yongqi, CHEN Lizheng, ZHANG Yongquan, WANG Hongjie, LI Hui. Performance of the sediment microbial fuel cell with algal-bacterial cathode for simultaneous treatment of excess sludge and aquaculture wastewater[J]. Journal of Hebei University(Natural Science Edition), 2025, 45(5): 507-519.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xbzrb.hbu.edu.cn/EN/10.3969/j.issn.1000-1565.2025.05.007
[1] 中华人民共和国住房和城乡建设部.中国城乡建设统计年鉴-2023[M].北京:中国城市出版社, 2024. [2] YU S, CHEN Z P, LI M T, et al. Principles, challenges, and optimization of indigenous microalgae-bacteria consortium for sustainable swine wastewater treatment[J]. Bioresource Technol, 2024, 406: 131055.DOI:10.1016/j.biortech.2024.131055. [3] MAHMOUDI A, MOUSAVI S A, DARVISHI P. Performance and recent development in sewage sludge-to-bioenergy using microbial fuel cells: A comprehensive review[J]. Int J Hydrog Energy, 2024, 50: 1432-1455. DOI:10.1016/j.ijhydene.2023.10.338. [4] WANG W Y, WANG K, ZHAO Q L, et al. Maximizing electron flux, microbial diversity and gene abundance in MFC powered electro-Fenton system by optimizing co-addition of lysozyme and 2-bromoethanesulfonate[J]. J Environ Manag, 2022, 322: 116067. DOI:10.1016/j.jenvman.2022.116067. [5] SUN F F, CHEN J F, SUN Z R, et al. Promoting bioremediation of brewery wastewater, production of bioelectricity and microbial community shift by sludge microbial fuel cells using biochar as anode[J]. Sci Total Environ, 2024, 929: 172418. DOI:10.1016/j.scitotenv.2024.172418. [6] PENGADETH D, PRAKASH NAIK S, SASI A, et al. Revisiting the role of algal biocathodes in microbial fuel cells for bioremediation and value-addition[J]. Chem Eng J, 2024, 496: 154144. DOI:10.1016/j.cej.2024.154144. [7] SHARMA M, JALALAH M, ALSAREII S A, et al. Microalgal cycling in the cathode of microbial fuel cells(MFCs)induced oxygen reduction reaction(ORR)and electricity: A biocatalytic process for clean energy[J]. Chem Eng J, 2024, 479: 147431. DOI:10.1016/j.cej.2023.147431. [8] BHADRA S, NAYAK S, SEVDA S. Simultaneous organic wastewater treatment and bioelectricity production in a dual chamber microbial fuel cell with Scenedesmus obliquus biocathode[J]. Energy Convers Manag, 2024, 316: 118849. DOI:10.1016/j.enconman.2024.118849. [9] 吴夏芫,周楚新,支银芳,等.微藻型微生物燃料电池的研究进展[J].环境科学与技术, 2012, 35(4): 82-86. DOI:10.3969/j.issn.1003-6504.2012.04.018. [10] LI M, ZHOU M H, TIAN X Y, et al. Enhanced bioenergy recovery and nutrient removal from swine wastewater using an airlift-type photosynthetic microbial fuel cell[J]. Energy, 2021, 226: 120422. DOI:10.1016/j.energy.2021.120422 [11] ZHANG Y, ZHAO Y Y, ZHOU M H. A photosynthetic algal microbial fuel cell for treating swine wastewater[J]. Environ Sci Pollut Res Int, 2019, 26(6): 6182-6190. DOI:10.1007/s11356-018-3960-4. [12] MOFIJUR M, RASUL M G, HASSAN N M S, et al. Recent development in the production of third generation biodiesel from microalgae[J]. Energy Procedia, 2019, 156: 53-58. DOI:10.1016/j.egypro.2018.11.088. [13] TAN X B, LAM M K, UEMURA Y, et al. Cultivation of microalgae for biodiesel production: A review on upstream and downstream processing[J]. Chin J Chem Eng, 2018, 26(1): 17-30. DOI:10.1016/j.cjche.2017.08.010. [14] KIM D W, SHIN W S, SUNG M G, et al. Light intensity control as a strategy to improve lipid productivity in Chlorella sp. HS2 for biodiesel production[J]. Biomass Bioener, 2019, 126: 211-219. DOI:10.1016/j.biombioe.2019.05.014 [15] 国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社, 2002. [16] ZHANG R, FANG X, MA Y X, et al. Research of synergistic effect of magnetic powder and biosurfactant in pollutants removal and membrane fouling alleviation[J]. Sep Purif Technol, 2023, 326: 124855. DOI:10.1016/j.seppur.2023.124855. [17] LOWRY O H, ROSEBROUGH N J, FARR L A, et al. Protein measurement with the folin phenol reagent[J]. J Biol Chem, 1951, 193(1): 265-275. [18] SCARANO S, PASCALE E, MINUNNI M. The early nucleation stage of gold nanoparticles formation in solution as powerful tool for the colorimetric determination of reducing agents: The case of xylitol and total polyols in oral fluid[J]. Anal Chim Acta, 2017,993: 71-78. DOI:10.1016/j.aca.2017.09.020. [19] SONG X S, WANG W T, CAO X, et al. Chlorella vulgaris on the cathode promoted the performance of sediment microbial fuel cells for electrogenesis and pollutant removal[J]. Sci Total Environ, 2020, 728: 138011. DOI:10.1016/j.scitotenv.2020.138011. [20] NEETHU B, GHANGREKAR M M. Electricity generation through a photo sediment microbial fuel cell using algae at the cathode[J]. Water Sci Technol, 2017, 76(11/12): 3269-3277. DOI:10.2166/wst.2017.485. [21] ABAZARIAN E, GHESHLAGHI R, MAHDAVI M A. Impact of light/dark cycle on electrical and electrochemical characteristics of algal cathode sediment microbial fuel cells[J]. J Power Sources, 2020, 475: 228686. DOI:10.1016/j.jpowsour.2020.228686. [22] LING J Y, XU Y B, LU C S, et al. Enhancing stability of microalgae biocathode by a partially submerged carbon cloth electrode for bioenergy production from wastewater[J]. Energies, 2019, 12(17): 3229. DOI:10.3390/en12173229. [23] CHEN S L, PATIL S A, SCHRÖDER U. A high-performance rotating graphite fiber brush air-cathode for microbial fuel cells[J]. Appl Energy, 2018, 211: 1089-1094. DOI:10.1016/j.apenergy.2017.12.013. [24] HE Z, SHAO H B, ANGENENT L T. Increased power production from a sediment microbial fuel cell with a rotating cathode[J]. Biosens Bio electron, 2007, 22(12): 3252-3255. DOI:10.1016/j.bios.2007.01.010. [25] ZHAO F, HARNISCH F, SCHRÖDER U, et al. Challenges and constraints of using oxygen cathodes in microbial fuel cells[J]. Environ Sci Technol, 2006, 40(17): 5193-5199. DOI:10.1021/es060332p. [26] ROZENDAL R A, HAMELERS H V M, BUISMAN C J N. Effects of membrane cation transport on pH and microbial fuel cell performance[J]. Environ Sci Technol, 2006, 40(17): 5206-5211. DOI:10.1021/es060387r. [27] 范晓萌.微生物燃料电池水凝胶电极制备及产电特性研究[D].济南:山东交通学院, 2023. DOI:10.27864/d.cnki.gsjtd.2023.000133. [28] SRIKANTH S, VENKATA MOHAN S. Change in electrogenic activity of the microbial fuel cell(MFC)with the function of biocathode microenvironment as terminal electron accepting condition: Influence on overpotentials and bio-electro kinetics[J]. Bioresour Technol, 2012, 119: 241-251. DOI:10.1016/j.biortech.2012.05.097. [29] LIU H Z, CHEN T Z, WANG N, et al. A new strategy for improving MFC power output by shared electrode MFC-MEC coupling[J]. Appl Energy, 2024, 359: 122677. DOI:10.1016/j.apenergy.2024.122677. [30] JIANG N, SONG J L, YAN M Y, et al. Iron cobalt-doped carbon nanofibers anode to simultaneously boost bioelectrocatalysis and direct electron transfer in microbial fuel cells: Characterization, performance, and mechanism[J]. Bioresour Technol, 2023, 367: 128230. DOI:10.1016/j.biortech.2022.128230. [31] KHAN M D, LI D, TABRAIZ S, et al. Integrated air cathode microbial fuel cell-aerobic bioreactor set-up for enhanced bioelectrodegradation of azo dye Acid Blue 29[J]. Sci Total Environ, 2021, 756: 143752. DOI:10.1016/j.scitotenv.2020.143752. [32] SUN Y B, LI P R, HUANG Y, et al. Synergistic treatment of digested wastewater with high ammonia nitrogen concentration using straw and microalgae[J]. Bioresour Technol, 2024, 412: 131406. DOI:10.1016/j.biortech.2024.131406. [33] ARUN S, SINHAROY A, PAKSHIRAJAN K, et al. Algae based microbial fuel cells for wastewater treatment and recovery of value-added products[J]. Renew Sustain Energy Rev, 2020, 132: 110041. DOI:10.1016/j.rser.2020.110041. [34] MINUTILLO M, FLAGIELLO F, NASTRO R A, et al. Performance of two different types of cathodes in microbial fuel cells for power generation from renewable sources[J]. Energy Procedia, 2018, 148: 1129-1134. DOI:10.1016/j.egypro.2018.08.030. [35] LIU H, FANG H H P. Extraction of extracellular polymeric substances(EPS)of sludges[J]. J Biotechnol, 2002, 95(3): 249-256. DOI:10.1016/S0168-1656(02)00025-1. [36] RABAEY K, VERSTRAETE W. Microbial fuel cells: Novel biotechnology for energy generation[J]. Trends Biotechnol, 2005, 23(6): 291-298. DOI:10.1016/j.tibtech.2005.04.008. [37] ZHANG X Q, BISHOP P L. Biodegradability of biofilm extracellular polymeric substances[J]. Chemosphere, 2003, 50(1): 63-69. DOI:10.1016/S0045-6535(02)00319-3. [38] YU J L, XIAO K, XU H, et al. Spectroscopic fingerprints profiling the polysaccharide/protein/humic architecture of stratified extracellular polymeric substances(EPS)in activated sludge[J]. Water Res, 2023, 235: 119866. DOI:10.1016/j.watres.2023.119866 [39] WANG X B, ZHANG Y D, HE D, et al. Biodegradation of activated sludge extracellular polymeric substances as the electron donors for denitrification[J]. J Environ Chem Eng, 2024, 12(2): 112077. DOI:10.1016/j.jece.2024.112077. [40] LI J P, CHEN Y X, QI J, et al. Characterization of EPS subfractions from a mixed culture predominated by partial-denitrification functional bacteria[J]. Water Res X, 2024, 24: 100250. DOI:10.1016/j.wroa.2024.100250. [41] LI W, LI X, HAN C X, et al. A new view into three-dimensional excitation-emission matrix fluorescence spectroscopy for dissolved organic matter[J]. Sci Total Environ, 2023, 855: 158963. DOI:10.1016/j.scitotenv.2022.158963. [42] 李艳,周鑫,平彩霞.连续低氧曝气与间歇曝气主流Anammox运行效能及微生物特性对比[J].中国环境科学, 2024, 44(9): 4910-4917. DOI:10.19674/j.cnki.issn1000-6923.2024.0171. ( |
[1] | CHAI Yuanji, WANG Hanming, LIU Zhimin,XIAO Longlong, SHEN Zhexi, YU Boqu. Preparation and characterization of Fe and Zn co-doped polyaniline microbial fuel cell cathode catalysts [J]. Journal of Hebei University(Natural Science Edition), 2024, 44(3): 261-268. |
[2] | MA Mengnan,ZHANG Yu,LI Xinke,LIU Jinbao,LIU Dan,GUO Huaizhong. Establishment and application of polysaccharide characteristic degradation profile for Yupingfeng oral liquid [J]. Journal of Hebei University(Natural Science Edition), 2023, 43(6): 616-623. |
[3] | LEI Yuan, LIU Guisui, ZHU Aixue, LI Muyuan, LIU Pengyan. Study on visible light photocatalytic degradation of dibutyl phthalate in water [J]. Journal of Hebei University(Natural Science Edition), 2022, 42(5): 474-482. |
[4] | GAO Lan, LEI Yuan, LI Zhansheng, LIU Pengyan. Pollution control mechanism analysis of thermal degradation of decabromodiphenyl ether by zinc oxide [J]. Journal of Hebei University(Natural Science Edition), 2022, 42(1): 29-37. |
[5] | ZHANG Jian, LU Kai, SHI Jing, GUO Huaizhong. Application of partial degradation products of polysaccharide in analysis of polysaccharide from Banlangen Granules [J]. Journal of Hebei University(Natural Science Edition), 2021, 41(1): 40-46. |
[6] | GAO Xiaohe, MA Xiaoyan, GU Yu, ZHAO Mingming, ZHANG Wei, DANG Wei, YUAN Xiaoxian. On degradation process of CH3NH3PbI3 film in different humidity conditions [J]. Journal of Hebei University (Natural Science Edition), 2019, 39(4): 353-358. |
[7] | CHANG Yanping, TIAN Qifan, GUO Xin, LI Yanqin, YAN Leilei, LI Chunqing. Composition of the intestinal bacteria and their cellulase characterization in Cathaica fasciola [J]. Journal of Hebei University (Natural Science Edition), 2017, 37(4): 400-404. |
[8] | YANG Wenzhi,WANG Shugen,LIU Jiaoyan,JIA Bei,LI Haiying. Preparation and characterization of a new hyaluronic acid grafted pullulan material [J]. Journal of Hebei University (Natural Science Edition), 2017, 37(2): 141-146. |
[9] | LIU Pengyan,YANG Jinxin,WANG Yonghui,ZHANG Yanna,TIAN Run. Influencing factors of microwave degradation of 2,2’,4,4’-tetrabromodiphenyl ether in aqueous solution [J]. Journal of Hebei University (Natural Science Edition), 2017, 37(1): 24-30. |
[10] | FAN Shanshan,YANG Yanbin,YU Wei,FU Guangsheng. Research progress of amorphous to microcrystalline phase transition silicon thin film solar cell [J]. Journal of Hebei University (Natural Science Edition), 2016, 36(5): 468-473. |
[11] | LIU Pengyan,TIAN Lei,CHEN Yanjie. Photodegradation of permethrin on the sand surface [J]. Journal of Hebei University (Natural Science Edition), 2014, 34(2): 160-165. |
[12] | ZHOU Jianke,LI Xiangmei,FU Yanfang. Photodegradation of phenylurea herbicides in environmental waters under irradiation of UV and sunlight [J]. Journal of Hebei University (Natural Science Edition), 2013, 33(6): 598-602. |
[13] | DING Shi-wen,ZHANG Hong-jun,ZHANG Yong-fen,ZHANG Yuan-yuan. Ptotocataiytic Degradation of Pesticide Using Mix-crystal TiO_2 Emulsion [J]. Journal of Hebei University (Natural Science Edition), 2010, 30(1): 49-52. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||