[1] 李红权,罗思哲.金融市场的复杂性与金融风险调控:基于金融混沌理论[J].金融理论与实践,2009(5):8-11.DOI: 10.3969/j.issn.1003-4625.2009.05.002. LI H Q, LUO S Z. Complexity and risk management in financial markets based on finance chaos theory[J].Financial Theory & Practice, 2009(5): 8-11. DOI: 10.3969/j.issn.1003-4625.2009.05.002. [2] 黄登仕,刘纪纯,湛垦华,等.竞争与合作共存的非线性模型[J].系统工程,1995(5):1-8. HUANG D S, LIU J C, ZHAN K H, et al.The nonlinear models on coexistence of competition and cooperation[J].Systems Engineering, 1995(5):1-8. [3] 涂润生. 非线性经济学简介[J].黄冈职业技术学院学报,2005, 7(3): 12-15. DOI: 10.3969/j.issn.1672-1047.2005.03.004. TU R S. Brief introduction of the non-linear economics[J]. Journal of Huanggang Polytechnic, 2005, 7(3): 12-15. DOI: 10.3969/j.issn.1672-1047.2005.03.004. [4] 宋捷,张汉江. 产销不平衡的改进盈亏平衡分析及应用[J].系统工程,1995,13(3):34-37. SONG J,ZHANG H J.The measurement of nonbalance between production and sellmentand modified break-event point analysis[J].Systems Engineering,1995,13(3):34-37. [5] 伍海华,李道叶,高锐.论证券市场的分形与混沌[J].世界经济,2001(7): 32-37. WU H H, LI D Y, GAO R. On the fractal and chaos of the securities market[J]. World Economy, 2001(7): 32-37. [6] 温红梅,姚凤阁.金融风险系统混沌效应的分析与控制[J].中国管理科学,2007,15(z1):286-290.DOI: 10.3321/j.issn:1003-207x.2007.z1.058. WEN H M,YAO F G. Analysis and control of the chaotic effect of the financial risk system[J]. Chinese Journal of Management Science,2007,15(z1):286-290.DOI: 10.3321/j.issn:1003-207x.2007.z1.058. [7] 辛宝贵,陈通,刘艳芹.一类分数阶混沌金融系统的复杂性演化研究[J].物理学报,2011,60(4):102-110. DOI: 10.7498/aps.60.048901. XIN B G, CHEN T, LIU Y Q. Complexity evolvement of a chaotic fractional-order financial system[J].Acta Physica Pinica,2011,60(4):102-110. DOI: 10.7498/aps.60.048901. [8] 张宇功,范学良,王碧轩.一类三维动力系统的分岔及混沌分析[J].温州大学学报(自然科学版),2014,35(4):32-36. DOI: 10.3875/j.issn.1674-3563.2014.04.005. ZHANG Y G,FAN X L,WANG B X.Analysis on bifurcation and chaos for a-class three-dimensional dynamical system[J]. Journal of Wenzhou University(Natural Sciences),2014,35(4):32-36. DOI: 10.3875/j.issn.1674-3563.2014.04.005. [9] KENNEDY J,EBERHART R. Particle swarm optimization[C] //Proc of the IEEE International Conference on Neural Networks, 2002: 1942-1948. DOI: 10.1109/ICNN.1995.488968. [10] 周飞,吕一清,石林娜.改进粒子群算法优化灰色神经网络预测模型及其应用[J].统计与决策,2017(11):66-69. DOI:10.13546/j.cnki.tjyjc.2017.11.017. ZHOU F,LÜ Y Q,SHI L N. Gray neural network forecasting model and its application based on improved particle swarm algorithm optimization[J]. Statistics and Decision,2017(11):66-69. DOI:10.13546/j.cnki.tjyjc.2017.11.017. [11] 陶凤英,郭雨珍.利用粒子群算法在菱形网格上预测蛋白质结构[J].生物信息学,2017,15(2):105-111. DOI: 10.3969/j.issn.1672-5565.20160702001. TAO F Y, GUO Y Z. Predicting protein structure on rhombus lattice by particle swarm optimization[J].China Journal of Bioinformatics,2017,15(2):105-111. DOI: 10.3969/j.issn.1672-5565.20160702001. [12] 王慧,王光宇,潘德文.基于改进粒子群算法的移动机器人路径规划[J].传感器与微系统,2017,36(5): 77-79. DOI: 10.3969/j.issn.1007-130X.2009.06.042. WANG H, WANG G Y, PAN D W. Research of the path planning method for mobile robots based on active particle swarm optimization[J]. Transducer and Microsystem Technologies,2017,36(5):77-79.DOI: 10.3969/j.issn.1007-130X.2009.06.042. [13] 彭冲,郑玲,李以农.基于粒子群优化算法主动悬架作动器多目标优化设计[J].中南大学学报(自然科学版),2017,48(4):968-976. DOI: 10.11817/j.issn.1672-7207.2017.04.016. PENG C, ZHENG L, LI Y N. Optimum design of active suspension actuator using multi-objective stochastic particle swarm optimization[J]. Journal of Central South University(Science and Technology),2017,48(4):968-976. DOI: 10.11817/j.issn.1672-7207.2017.04.016. [14] 朱沙,陈臣.一种求解基数约束投资组合优化的混合粒子群算法[J].统计与决策,2016(10):64-67. DOI: 10.13546/j.cnki.tjyjc.2016.10.017. ZHU S, CHEN C.A hybrid particle swarm optimization algorithm for solving base constrained portfolio optimization[J]. Statistics and Decision,2016(10):64-67. DOI: 10.13546/j.cnki.tjyjc.2016.10.017. [15] 耿立艳.股指波动率的最小二乘支持向量机预测方法[J].统计与决策,2015(9):90-92. DOI: 10.13546/j.cnki.tjyjc.2015.09.024. GENG L Y. The least squares support vector machine prediction method for the volatility of Stock index[J]. Statistics and Decision,2015(9):90-92. DOI: 10.13546/j.cnki.tjyjc.2015.09.024. [16] 李红梅,孙俊,须文波.基于量子行为粒子群优化方法的随机规划算法[J].计算机工程与应用,2007,43(24):185-188. DOI: 10.3321/j.issn:1002-8331.2007.24.053. LI H M, SUN J, XU W B. Empirical study based on quantum-behaved particle swarm optimization stochastic programming algorithm[J]. Computer Engineering and Applications,2007,43(24):185-188.DOI: 10.3321/j.issn:1002-8331.2007.24.053. [17] 黄福员.金融风险预警的MPSO-FNN模型构建与应用[J].计算机工程与应用,2009,45(14):210-212.DOI: 10.3778/j.issn.1002-8331.2009.14.065. HUANG F Y. Construction of MPSO-FNN model for financial risk early warning and its pplication[J].Computer Engineering and Applications, 2009,45(14):210-212.DOI: 10.3778/j.issn.1002-8331.2009.14.065. [18] 李凌霞,郝春梅,王红丽.PSO算法优化BP神经网络的金融风险预警研究[J].信息技术,2014(8):86-89.DOI:10.3969/j.issn.1009-2552.2014.08.023. LI L X, HAO C M, WANG H L. Study on financial risk warning based on BP neural network optimized by the improved PSO[J].Information Technology,2014(8):86-89.DOI:10.3969/j.issn.1009-2552.2014.08.023. [19] 徐玉华,谢承蓉,王玉玲.金融系统风险的演化机理研究[J].统计与决策,2016(1):172-175. DOI:10.13546/j.cnki.tjyjc.2016.01.045. XU Y H, XIE C R, WANG Y L. Research on the evolution mechanism of financial system risk [J]. Statistics and Decision,2016(1):172-175. DOI:10.13546/j.cnki.tjyjc.2016.01.045. |