[1] SMITH S E, READ D J. Mycorrhizal symbiosis[M]. Cambridge, UK: Academic Press, 2008. [2] VAN DER HEIJDEN M G A, STREITWOLF-ENGEL R, RIEDL R, et al. The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland[J]. New Phytologist, 2006, 172(4): 739-752. DOI: 10.1111/j. 1469-8137.2006.01862.x. [3] COLLAR G, ROUPHAEL Y, CARDARELL M, et al. Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration[J]. Biology and Fertility of Soils, 2008, 44(3): 501-509. DOI:10.1007/ s00374-007-0232-8. [4] WU S C, WONG C C, SHU W S, et al. Mycorrhizo-remediation of lead/zinc mine tailings using vetiver: a field study[J]. International Journal of Phytoremediation, 2011, 13:61-74. DOI: 10.1080/15226511003671353. [5] ZHANG T, SUN Y, SHI Z, et al. Arbuscular mycorhizal fungi can accelerate the restoration of degraded spring grassland in Central Asia[J]. Rangeland Ecology & Management, 2012, 65(4):426-432. DOI: 10.2111/REM-D-11-00016.1. [6] NICHOLS K A, WRIGHT S F. Contributions of soil fungi to organic matter in agricultural soils[C] /MAGDIFF F, WEIL R. Functions and Management of Soil Organic Matter in Agroecosystems. CRC, Washington, DC, 2004, 179-198. [7] BORIE F, RUBIO R, ROUANET J L, et al. Effects of tillage systems on soil characteristics,glomalin and mycorrhizal propagules in a Chilean Ultisol[J]. Soil and Tillage Research, 2006, 88: 253-261. DOI: 10.1016/j.still.2005.06.004. [8] WRIGHT S F, GREEN V S, CAVIGELLI M A. Glomalin in aggregate size classes from three different farming systems[J]. Soil and Tillage Research, 2007, 94: 546-549. DOI: 10.1016/j.still.2006.08.003. [9] 贺海升, 王琼, 裴忠雪, 等. 落叶松人工林球囊霉素相关土壤蛋白与土壤理化性质空间差异特性[J].生态学杂志, 2015, 34(12): 3466-3473. DOI: 10.13292/j. 1000-4890.2015.0323. HE H S, WANG Q, PEI Z X, et al. Spatial variations of glomalin-related soil protein in Larix gmelinii plantations and possible relations with soil physicochemical properties[J]. Chinese Journal of Ecology, 2015, 34(12): 3466-3473. DOI: 10.13292/j. 1000-4890.2015.0323. [10] 许伟, 贺学礼, 孙茜, 等. 塞北荒漠草原柠条锦鸡儿 AM 真菌的空间分布[J]. 生态学报, 2015, 35(4): 1124-1133. DOI: 10.5846 / stxb201401060045. XU W, HE X L, SUN Q, et al. The spatial distribution of arbuscular mycorrhizal fungi in the rhizosphere of Caragana korshinskii in Saibei desert steppe[J]. Acta Ecologica Sinica, 2015, 35(4): 1124-1133. DOI: 10.5846 / stxb201401060045. [11] 贺学礼, 陈烝, 郭辉娟, 等. 荒漠柠条锦鸡儿AM真菌多样性[J]. 生态学报, 2012, 32(10): 3041-3049. DOI: 10.5846 / stxb201104270557. HE X L, CHEN C, GUO H J, et al. Diversity of arbuscular mycorrhizal fungi in the rhizosphere of Caragana korshinskii Kom. in desert zone[J]. Acta Ecologica Sinica, 2012, 32(10): 3041-3049. DOI: 10.5846 / stxb201104270557. [12] DE KROON H, VAN GROENENDAEL J. The ecology and evolution of clonal plants[M]. Leiden: Backhuys Publishers, 1997. [13] 贺学礼, 李英鹏, 赵丽莉, 等. 毛乌素沙地克隆植物沙鞭生长对AM真菌生态分布的影响[J]. 生态学报, 2010, 30(3):7751-758. HE X L, LI Y P, ZHAO L L, et al. Effects of the growth of clonal plant Psammochloa villosa Trin. Boron ecological distribution of arbuscular mycorrhizal fungi in Mu Us Sandland[J]. Acta Ecologica Sinica, 2010, 30(3): 751-758. [14] 王铁娟, 杨持, 吕桂芬, 等. 中国北部六种沙蒿的地理替代规律及其主导生态因子[J]. 生态学报, 2005, 25(5): 1012-1018. WANG T J, YANG C, LU G F, et al. An analysis of the geographical substitute law and driven factors for six sandy plants of genus Artemisia in Northern China[J]. Acta Ecologica Sinica, 2005, 25(5): 1012-1018. [15] 山宝琴, 贺学礼. 2 种沙蒿根围AM真菌时空分异 [J]. 干旱区研究, 2011,28(5): 813-819. DOI: 10.13866/j.azr.2011.05.011. SHAN B Q, HE X L. Spatiotemporal distribution of AM fungi in the rhizosphere of artemisia ordosica and A. sphaerocephala in Desert[J]. Arid Zone Research, 2011,28(5): 813-819. DOI: 10.13866/j.azr.2011.05.011. [16] PHILLIPS J M, HAYMAN D S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J]. Transactions of the British Mycological Society, 1970, 55(1): 158-161. DOI: 10.1016/S0007-1536(70)80110-3. [17] ZHAO J L, HE X L. Arbuscular mycorrhizal fungi associated with the clonal plants in Mu Us sandland of China[J]. Progress in Natural Science, 2007, 17(11): 1296-1302. [18] GERDEMANN J W, NICOLSON T H. Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting[J]. Transactions of the British Mycological Society, 1963, 46(2): 235-244. DOI: 10.1016/S0007-1536(63)80079-0. [19] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科学技术出版社, 2000. LU R K. Soil argrochemistry analysis protocoes[M]. Beijing: China Agriculture Science Press, 2000. [20] WRIGHT S F, UPADHYAYA A. A survey of soils for aggregate stability and glomalin,a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi[J]. Plant and Soil, 1998, 202(1): 97-107. DOI: 10.1023/A:1004347701584. [21] DAVID P J, SARA G, BRAY B. Glomalin extraction and measurement[J]. Soil Biology and Biochemistry, 2008, 40(3): 728-739. DOI: 10.1016/j.soilbio.2007.10.007. [22] BAREA J M, PALENSUELA J, CORMEJO P, et al. Ecological and functional roles of mycorrhizas in semi-arid ecosystems of Southeast Spain[J]. Journal of Arid Environments, 2011, 75:1292-1301. DOI: 10.1016/j.jaridenv.2011.06.001. [23] 山宝琴, 张永涛, 李茜, 等. 原油污染土壤中蒿属植物与丛枝菌根真菌共生性研究[J]. 环境污染与防治, 2017, 39(1): 54-59. DOI: 10. 15985/j. cnki.1001-3865.2017.01.011. SHAN B Q, ZHANG Y T, LI Q, et al. Symbiotic relationship between Artemisiaspecids and arbuscular mycorrhiza fungi in crude oilcontaminated siol[J]. Environmental Pollution and Control, 2017, 39(1): 54-59. DOI: 10. 15985/j. cnki.1001-3865.2017.01.011. [24] 贺学礼, 陈程, 何博. 北方两省农牧交错带沙棘根围AM真菌与球囊霉素空间分布[J]. 生态学报, 2011, 31(6): 1653- 1661. HE X L, CHEN C, HE B. Spatial distribution of arbuscular mycorrhizal fungi and glomalin of Hippophae rhamnoides L in farming-pastoral zone from the two northern provinces of China[J]. Acta Ecologica Sinica, 2011, 31(6): 1653- 1661. [25] 贺学礼, 刘雪伟, 李英鹏. 沙坡头地区沙冬青 AM 真菌的时空分布[J]. 生态学报, 2010, 30(2): 370-376. HE X L, LIU X W, LI Y P. The spatio-temporal distribution of arbuscular mycorrhizal fungi in the rhizosphere of Ammopiptathus mongolicus from Shapotou[J]. Acta Ecologica Sinica, 2010, 30(2): 370-376. [26] 杨红薇, 张建强, 唐家良, 等. 紫色土坡地不同种植模式下水土和养分流失动态特征[J]. 中国生态农业学报, 2008,16(3): 615-619. DOI: 10.3724/SP.J.1011.2008.00615. YANG H W, ZHANG J Q, TANG J L, et al. Soil, water and nutrient loss under different cropping systems inpurple-soil slope-lands [J]. Chinese Journal of Eco-Agriculture, 2008, 16(3): 615-619. DOI: 10.3724/SP.J.1011.2008.00615. [27] 张亚娟, 贺学礼, 赵丽莉, 等. 塞北荒漠植物根围球囊霉素和生态化学计量特征的空间分布[J]. 环境科学研究, 2017, 30(11): 1723-1971. DOI: 10. 13198/j.issn.1001-6929.2017.03.06. ZHANG Y J,HE X L,ZHAO L L,et al.Spatial distribution of glomalin and ecological stoichiometry characteristics under desert plants in Saibei Sandland[J].Research of Environmental Sciences, 2017, 30(11): 1723-1971. DOI: 10.13198/j.issn. 1001-6929.2017.03.06. [28] HAMEL C. Impact of arbuscular mycorrhizal fungi on N and P cycling in the root zone[J]. Canadian Journal of Soil Science, 2004, 84(4): 383-395. DOI: 10.4141/S04-004. [29] PANWAR J, TARAFDAR J C. Arbuscular mycorrhizal fungal dynamics under Mitragyna parvifolia(Roxb.)Korth. in Thar Desert[J]. Applied Soil Ecology, 2006, 34(2-3): 200-208. DOI: 10.1016/j.apsoil.2006.02.001. [30] 盛敏, 唐明, 张峰峰, 等. 土壤因子对甘肃、宁夏和内蒙古盐碱土中AM真菌的影响[J]. 生物多样性, 2011, 19(1): 85-92. DOI: 10.3724/SP.J.1003.2011.08145. SHENG M, TANG M, ZHANG F F, et al. Effect of soil factors on arbuscular mycorrhizal fungi in saline alkaline soils of Gansu, Inner Mongolia and Ningxia[J]. Biodiversity Science, 2011, 19(1): 85-92. DOI:10.3724/SP.J.1003.2011.08145. [31] 周礼恺. 土壤酶学[M]. 北京: 科技出版社, 1987: 275-276. ZHOU L K. Soil enzymology[M]. Beijing: Science and Technology Press, 1987: 275-276. [32] BAI C M, HE X L, TANG H L,et al. Spatial distribution of arbuscular mycorrhizal fungi, glomalin and soil enzymes under the canopy of Astragalus adsurgens Pall. in the Mu Us sandland, China[J]. Soil Biology and Biochemistry, 2009, 41(5): 941-947. DOI: 10.1016/j.soilbio.2009.02.010. [33] DRIVER J D, HOLLBEN W E, RILLIG. Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi[J]. Soil Biology and Biochemistry, 2005, 37(1): 101-106. DOI: 10.1016/j.soilbio.2004.06.011. [34] 郭良栋, 田春杰. 菌根真菌的碳氮循环功能研究进展[J]. 微生物学通报, 2013, 40(1): 158-171. DOI: 10.13344/j. microbiol.china.2013.01.007. GUO L D, TIAN C J. Progress of the function of mycorrhizal fungi in the cycle of carbon and nitrogen[J]. Microbiology China, 2013, 40(1): 158-171. DOI: 10.13344/j. microbiol.china.2013.01.007. [35] 山宝琴. 荒漠沙蒿AM真菌多样性及时空分布[D]. 杨凌: 西北农林科技大学, 2009. SHAN B Q. Diversity and spatio-temporal distribution on AM fungi associated with the A.sphaetocephala and A.ordosica in desert[D]. Yangling: Northwest A & F University, 2009. [36] 贺学礼, 白春明, 赵丽莉. 毛乌素沙地沙打旺根围AM真菌的空间分布[J]. 应用生态学报, 2008, 19(2): 2711- 2716. DOI:10.13287/j.1001-9332.2008.0057. HE X L, BAI C M, ZHAO L L. Spatial distribution of arbuscular mycorrhizal fungi in Astragalus adsurgens root-zone soil in Mu Us sandland[J]. Chinese Journal of Applied Ecology, 2008, 19(2): 2711- 2716. DOI:10.13287/j.1001-9332.2008.0057. [37] 刘润进, 陈应龙. 菌根学[M]. 北京: 科学出版社, 2007. LIU R J, CHEN Y L. Mycorrhizology[M]. Beijing:Science Press, 2007. [38] RILLIG M C, RANSEY P W, MORRIS S, et al. Glomalin, an arbuscular-mycorrhizal fungal soil protein,responds to land-use change[J]. Plant and Soil, 2003, 253: 293-299. DOI: 10.2307/24121186. |