河北大学学报(自然科学版) ›› 2019, Vol. 39 ›› Issue (1): 86-92.DOI: 10.3969/j.issn.1000-1565.2019.01.015

• • 上一篇    下一篇

实数编码遗传算法的改进及并行化实现

刘振鹏1,2,王雪峰1,薛雷1,张彬2,张寿华1   

  • 收稿日期:2018-09-06 出版日期:2019-01-25 发布日期:2019-01-25
  • 通讯作者: 张寿华(1980—),男,河北广宗人,河北大学副教授,主要从事网络安全与隐私保护、高性能计算等方向研究.E-mail:zhangshouhua@hbu.edu.cn
  • 作者简介:刘振鹏(1966—),男,河北安国人,河北大学教授,博士,主要从事云计算与信息安全、并行处理与高性能计算方向研究. E-mail:lzp@hbu.edu.cn
  • 基金资助:
    河北省创新能力提升计划项目(179676278D;17455309D);教育部“云数融合”科教创新基金资助项目(2017A20004)

Improvement and parallelism of real-coded genetic algorithm

LIU Zhenpeng1,2, WANG Xuefeng1, XUE Lei1, ZHANG Bin2, ZHANG Shouhua1   

  1. 1. School of Cyberspace Security and Computer, Hebei University, Baoding 071002, China; 2. Information Technology Center, Hebei University, Baoding 071002, China
  • Received:2018-09-06 Online:2019-01-25 Published:2019-01-25

摘要: 针对实数编码的遗传算法容易掉入局部极值、收敛速度慢等缺点,提出一种改进的实数编码的遗传算法,并对其进行了基于GPU的并行化实现.通过4个典型的遗传算法性能测试函数进行测试,结果表明,改进后的算法可以有效地跳出局部极值点,并能加快算法的收敛速度;在求解复杂的高维函数时,并行化后的改进算法可以显著减少算法的运行时间.

关键词: 遗传算法, 实数编码, 算法改进, GPU并行

Abstract: Aiming at the shortcoming of the real-coded genetic algorithm, which is easy to fall into local extremum and slow convergence speed, an improved real-coded genetic algorithm is proposed and implemented by GPU-based parallelization. Through four typical genetic algorithm performance test functions, the results show that the improved algorithm can not only effectively jump out of the local extremum, but also accelerate the convergence speed of the algorithm; When solving complex high-dimensional functions, the improved parallel algorithm can significantly reduce the running time of the algorithm.

Key words: genetic algorithm, real-coded, algorithm improvement, GPU parallel

中图分类号: