河北大学学报(自然科学版) ›› 2019, Vol. 39 ›› Issue (1): 93-98.DOI: 10.3969/j.issn.1000-1565.2019.01.016

• • 上一篇    下一篇

基于时空加权的多特征融合动作识别算法

王思乐,王铭羽,杨文柱,陈丽萍,陈向阳   

  • 收稿日期:2018-05-16 出版日期:2019-01-25 发布日期:2019-01-25
  • 作者简介:王思乐(1971—),男,河北大城人,河北大学讲师,主要从事计算机应用与模式识别方面的研究. E-mail:fontain@163.com
  • 基金资助:
    河北省自然科学基金资助项目(F2015201033;F2017201069)

Multi-feature fusion behavior recognition algorithm based on spatiotemporal weighting

WANG Sile, WANG Mingyu, YANG Wenzhu, CHEN Liping, CHEN Xiangyang   

  1. School of Cyber Security and Computer, Hebei University, Baoding 071002, China
  • Received:2018-05-16 Online:2019-01-25 Published:2019-01-25

摘要: 动作识别是机器视觉领域的基础应用之一,目前动作识别算法多数基于单帧图像特征或简单综合时间维度特征和空间维度特征,一定程度上约束了特征表达能力.为了解决该问题,本文提出了一种时空特征融合方法,将时空金字塔中引入加权策略,有机地将2个维度的特征融合在一起,打破空间维度特征上的局限性.实验结果表明基于本文提出的时空加权特征融合的识别方法可有效提高动作识别精度.

关键词: 多特征, 时空加权, 特征融合, 行为识别

Abstract: Behavior recognition is a basic application of machine vision. At present, most algorithms for behavior recognition are based on the features from space domain, or other algorithms are simply merge the features on time domain and space domain. Thus these methods restrain the capability of representation. To deal with this problems, we propose a time-space domain feature fusion method. In this method, we introduce the spatiotemporal weight strategy into time-space pyramid. By doing this, we can break the limitations of feature space, integrate the features from the two dimensions together. The experiments show that our spatiotemporal weighting method on multi-feature fusion can improve the accuracy of behavior recognition.

Key words: multi-feature, spatiotemporal weighting, feature fusion, behavior recognition

中图分类号: