[1] 杨敬伟,杨文柱.基于带通滤波和绿色因子的绿色识别方法[J].河北大学学报(自然科学版),2015,35(3):305-310. DOI:10.3969/j.issn.1000-1565.2015.03.013. [2] DEAN T A, SINGH S S, JASRA A, et al. Parameter estimation for hidden markov models with intractable likelihoods[J]. Scandinavian Journal of Statistics, 2015, 41(4):970-987.DOI: 10.1111/sjos.12077. [3] WANG H, SCHMID C. Action recognition with improved trajectories[C] // IEEE International Conference on Computer Vision, Sydney, Australia, 2013:3551-3558. DOI: 10.1109/ICCV.2013.441. [4] MAQUEDA A I, RUANO A, DEL-BLANCO C R, et al. Novel multi-feature bag-of-words descriptor via subspace random projection for efficient human-action recognition[C] // IEEE International Conference on Advanced Video and Signal Based Surveillance, Karlsruhe, Germany, 2015:1-6. DOI: 10.1109/AVSS.2015.7301736. [5] ROSS D A, LIM J, LIN R S, et al. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1-3):125-141. DOI:10.1007/s11263-007-0075-7. [6] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C] // IEEE Computer Society Conference on Computer Vision & Pattern Recognition. IEEE Computer Society, San Diego, USA, 2005:886-893. DOI: 10.1109/CVPR.2005.177. [7] RANJAN A, BLACK M J. Optical flow estimation using a spatial pyramid network[C] // IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017:2720-2729.DOI: 10.1109/CVPR.2017.291. [8] WANG Q, MA Q, LUO C H, et al. Hybrid histogram of oriented optical flow for abnormal behavior detection in crowd scenes[J]. International Journal of Pattern Recognition & Artificial Intelligence, 2016, 30(2):1884-1897.DOI: 10.1142/S0218001416550077. [9] 王宇新, 郭禾, 何昌钦,等. 用于图像场景分类的空间视觉词袋模型[J]. 计算机科学, 2011, 38(8):265-268. DOI:10.3969/j.issn.1002-137X.2011.08.064. [10] WANG H, KLASER A, SCHMID C, et al. Dense trajectories and motion boundary descriptors for action recognition[J]. International Journal of Computer Vision, 2013, 103(1):60-79.DOI: 10.1007/s11263-012-0594-8. [11] SOOMRO K, ZAMIR A R, SHAH M. UCF101: A dataset of 101 human actions classes from videos in the wild[EB/OL].(2012-09-03)[2018-05-12].https://arxiv.org/abs/1212.0402vl. |