[1] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. DOI: 10.1023/B:VISI.0000029664.99615.94. [2] 刘翠响,李敏,张凤林.基于词包模型和SURF局部特征的人脸识别[J].河北大学学报(自然科学版),2017,37(04):411-418.DOI:10.3969/j.issn.1000 1565.2017.04.013. [3] 张欣,魏熙宁,王兵.基于视觉词袋和三角函数法的动作识别[J].河北大学学报(自然科学版),2018,38(2):204-210.DOI:10.3969/j.issn.1000 1565.2018.02.013. [4] LAZEBNIK S, SCHMID C, PONCE J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[C] //2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR'06). IEEE, 2006, 2: 2169-2178. DOI: 10.1109/CVPR.2006.68. [5] PERRONNIN F, SÀNCHEZ J, MENSINK T. Improving the fisher kernel for large-scale image classification[M] //Computer Vision – ECCV 2010, Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 143-156. DOI:10.1007/978-3-642-15561-1_11. [6] YAO X, HAN J, CHENG G, et al. Semantic annotation of high-resolution satellite images via weakly supervised learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6): 3660-3671. DOI: 10.1109/TGRS.2016.2523563. [7] ZOU Q, Ni L, ZHANG T, et al. Deep learning based feature selection for remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(11): 2321-2325. DOI: 10.1109/LGRS.2015.2475299. [8] 翟俊海,张素芳,郝璞.卷积神经网络及其研究进展[J].河北大学学报(自然科学版),2017,37(06):640-651.DOI:10.3969/j.issn.1000-1565.2017.06.012. [9] 张晓男, 钟兴, 朱瑞飞, 等. 基于集成卷积神经网络的遥感影像场景分类[J]. 光学学报, 2018, 38(11): 350-360.DOI:10.3788/AOS201838.1128001. [10] 张洪群,刘雪莹,杨森,等.深度学习的半监督遥感图像检索[J].遥感学报,2017,21(03):406-414.DOI:10.11834/jrs.20176105. [11] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. DOI: 10.1109/5.726791. [12] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. DOI:10.1145/3065386. [13] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014. [14] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[Z].IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Boston, USA, 2015. DOI:10.1109/cvpr.2015.7298594. [15] HE K M, ZHANG X Y, REN S Q, et al. Spatial Pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. DOI:10.1109/tpami.2015.2389824. [16] JARRETT K, KAVUKCUOGLU K, LECUN Y. What is the best multi-stage architecture for object recognition?[C] //2009 IEEE 12th International Conference on Computer Vision, IEEE, 2009: 2146-2153. DOI: 10.1109/ICCV.2009.5459469. [17] SUN Y, WANG X, TANG X. Deep learning face representation from predicting 10,000 classes[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 1891-1898. DOI:10.1109/cvpr.2014.244. [18] LIU L, SHEN C, VAN DEN HENGEL A. The treasure beneath convolutional layers: Cross-convolutional-layer pooling for image classification[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 4749-4757. DOI: 10.1109/CVPR.2015.7299107. [19] 李琳. 鄱阳湖区湿地特征提取研究[D]. 赣州: 江西理工大学, 2014. |