[1] ARIYANTO G, NIXON M S. Model-based 3D gait biometrics[Z]. International Joint Conference on Biometrics, Washington, DC, USA, 2011. DOI:10.1109/ijcb.2011.6117582. [2] BODOR R, DRENNER A, FEHR D, et al. View-independent human motion classification using image-based reconstruction[J]. Image and Vision Computing, 2009, 27(8): 1194-1206. DOI:10.1016/j.imavis.2008.11.008. [3] GOFFREDO M, BOUCHRIKA I, CARTER J N, et al. Self-calibrating view-invariant gait biometrics[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B(Cybernetics), 2010, 40(4): 997-1008. DOI:10.1109/tsmcb.2009.2031091. [4] MAKIHARA Y, SUZUKI A, MURAMATSU D, et al. Joint intensity and spatial metric learning for robust gait recognition[Z]. IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 2017. DOI:10.1109/cvpr.2017.718. [5] KUSAKUNNIRAN W, WU Q, LI H D, et al. Multiple views gait recognition using View Transformation Model based on optimized Gait Energy Image[Z]. IEEE 12th International Conference on Computer Vision Workshops, Kyoto, Japan, 2009. DOI:10.1109/iccvw.2009.5457587. [6] HU M D, WANG Y H, ZHANG Z X, et al. View-invariant discriminative projection for multi-view gait-based human identification[J]. IEEE Transactions on Information Forensics and Security, 2013, 8(12): 2034-2045. DOI:10.1109/tifs.2013.2287605. [7] YU S Q, CHEN H F, REYES E B G, et al. GaitGAN: invariant gait feature extraction using generative adversarial networks[Z]. IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, 2017. DOI:10.1109/cvprw.2017.80. [8] YAN C, ZHANG B L, COENEN F. Multi-attributes gait identification by convolutional neural networks[Z]. 8th International Congress on Image and Signal Processing, Shenyang, 2015. DOI:10.1109/cisp.2015.7407957. [9] WU Z F, HUANG Y Z, WANG L. Learning representative deep features for image set analysis[J]. IEEE Transactions on Multimedia, 2015, 17(11): 1960-1968. DOI:10.1109/tmm.2015.2477681. [10] CASTRO F M, MARÍN-JIMÉNEZ M J, GUIL N, et al. Automatic learning of gait signatures for people identification[M] //Advances in Computational Intelligence, Cham: Springer International Publishing, 2017: 257-270. DOI:10.1007/978-3-319-59147-6_23 [11] WOLF T, BABAEE M, RIGOLL G. Multi-view gait recognition using 3D convolutional neural networks[Z]. IEEE International Conference on Image Processing, Phoenix, 2016. DOI:10.1109/icip.2016.7533144. [12] FENG Y, LI Y C, LUO J B. Learning effective Gait features using LSTM[Z]. 23rd International Conference on Pattern Recognition, Cancun. 2016.DOI:10.1109/icpr.2016.7899654. [13] TONG S B, LING H F, FU Y Z, et al. Cross-view gait identification with embedded learning[Z]. Thematic Workshops of ACM Multimedia 2017 - Thematic Workshops'17, Mountain Uiew, CA,USA. DOI:10.1145/3126686.3126753. [14] HUANG Y Y, ZHANG J F, ZHAO H H, et al. Attention-based network for cross-view gait recognition[M] //Neural Information Processing, Cham: Springer International Publishing, 2018: 489-498. DOI:10.1007/978-3-030-04239-4_44. [15] GOODFELLOW I J, POUGET-ABADIE J,MIRZA M,et al.Generative adversarial networks[J].Advances in Neural Information Processing Systems. 2014, 3:2672-2680. DOI:10.1145/3422622. [16] RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[Z].4th International Conference on Learning Representation ICLR 2016 San Juan, Puerto Rico. [17] MIRZA M, OSINDERO S. Conditional generative adversarial nets[J].Computer Science,2014:2672-2680. [18] LEDIG C, THEIS L, HUSZAR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[Z]. Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu, 2017. DOI:10.1109/cvpr.2017.19. [19] YEH R A, CHEN, LIM T Y, et al. Semantic image inpainting with deep generative models[Z]. IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu, 2017. DOI:10.1109/cvpr.2017.728. [20] SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: A unified embedding for face recognition and clustering[Z]. IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Boston, 2015. DOI:10.1109/cvpr.2015.7298682. [21] HE Y W, ZHANG J P, SHAN H M, et al. Multi-task GANs for view-specific feature learning in gait recognition[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(1): 102-113. DOI:10.1109/tifs.2018.2844819. [22] YU S Q, CHEN H F, WANG Q, et al. Invariant feature extraction for gait recognition using only one uniform model[J]. Neurocomputing, 2017, 239: 81-93. DOI:10.1016/j.neucom.2017.02.006. ( |