河北大学学报(自然科学版) ›› 2016, Vol. 36 ›› Issue (2): 210-217.DOI: 10.3969/j.issn.1000-1565.2016.02.017

• • 上一篇    下一篇

基于Gabor特征和协同神经网络的车牌识别方法

石贵民,余文森,肖钟捷   

  • 收稿日期:2015-09-15 出版日期:2016-03-25 发布日期:2016-03-25
  • 作者简介:石贵民(1980—),男,河北滦南人,武夷学院副教授,主要从事认知科学、教育人机交互及数字化学习技术方向研究. E-mail:13874265@qq.com
  • 基金资助:
    福建省自然科学基金资助项目(2015J01668;2015J01669);福建省高校专项基金资助项目(JK2015052);福建省中青年教师教育科研基金资助项目(JB14099);福建省教育科学“十二五”规划2015年度课题资助项目(FJJKCG15-195);武夷学院校科研基金资助项目(XQ201306)

A method for license plate recognition in vehicle based on Gabor feature and synergetic neural network

SHI Guimin,YU Wensen,XIAO Zhongjie   

  1. College of Mathematics and Computer, Wuyi University, Wuyishan 354300, China
  • Received:2015-09-15 Online:2016-03-25 Published:2016-03-25

摘要: 研究了车牌字符识别问题,针对车牌识别系统易受天气及光照变化影响的实际应用,将Gabor特征和协同神经网络应用在车牌字符识别中,提高了识别率.首先对车牌字符进行二值化和切分,然后利用Gabor滤波器提取车牌字符的特征参数;再利用协同模式训练特征参数,进而得出训练样本;最后根据协同神经网络进一步识别车牌字符.通过大量仿真实验表明,该方法在不同场景、光照条件下,与传统方法相比,识别率有了较大改进,该方法在车牌识别领域有较强的实用性.

关键词: 特征提取, 神经网络, 车牌识别, 字符分割, Gabor变换

Abstract: Vehicle license recognition has been studied under the climate and light conditions.The feature extraction of Gabor and synergetic neural network has been used to enhance the recognition rate.First,the characters of vehicle license go through the binarization and segmenting to extract the characteristic parameters of the license characters by Gabor filter.Then,the synergetic mode is used to train the characteristic parameters and work out the training sample.Finally,the synergetic neural network is utilized to recognize the license character.Under a variety of environments and light conditions, this approach achieves a much higher rate of recognition rate compared with the traditional mode suggesting that this new method is very effective in the field of vehicle license recognition.

Key words: Feature extraction, Neural network, license plate recognition, character segmentation, Gabor filter

中图分类号: