[1] LI H, FAN X, JIAO L, et al. A high performance FPGA-based accelerator for large-scale convolutional neural networks[C] //IEEE, 26th International Conference on Field Programmable Logic and Applications, 2016:1-9. DOI: 10.1109/FPL. 2016. 7577308. [2] ZHANG C, LI P, SUN G, et al. Optimizing FPGA-based accelerator design for deep convolutional neural networks[C] //ACM, Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2015:161-170. DOI: 10.1145/2684746. 2689060. [3] FARABET C, POULET C, HAN J Y, et al. CNP: An FPGA-based processor for convolutional networks[C] // IEEE, International Conference on Field Programmable Logic and Applications, 2009:32-37. DOI: 10.1109/FPL. 2009. 5272559. [4] PERKO M, FAJFAR I, TUMA T, et al. Low-cost, high-performance CNN simulator implemented in FPGA[C] //IEEE, Proceedings of the 2000 6th IEEE International Workshop on Cellular Neural Networks and Their Applications, 2000:277-282. DOI: 10. 1109/CNNA. 2000. 876858. [5] FARABET C, POULET C, LECUN Y. An FPGA-based stream processor for embedded real-time vision with Convolutional Networks[C] // IEEE, 12th International Conference on Computer Vision Workshops, 2009:878-885. DOI: 10. 1109/ICCVW. 2009. 5457611. [6] SANKARADAS M, JAKKULA V, CADAMBI S, et al. A massively parallel coprocessor for convolutional neural networks[C] //IEEE, 20th IEEE International Conference on Application-Specific Systems, Architectures and Processors, 2009:53-60. DOI: 10.1109/ASAP.2009.25. [7] MA Y, CAO Y, VRUDHULA S, et al. Optimizing loop operation and dataflow in FPGA acceleration of deep convolutional neural networks[C] //ACM, Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2017:45-54. DOI:10.1145/3020078.3021736. [8] CHANG J W, KANG S J. Optimizing FPGA-based convolutional neural networks accelerator for image super-resolution[C] //IEEE Press, Proceedings of the 23rd Asia and South Pacific Design Automation Conference, 2018: 343-348. DOI: 10.1109/ASPDAC.2018.8297347. [9] GARCIA C, DELAKIS M. A neural architecture for fast and robust face detection [C] //IEEE, 16th International Conference on Pattern Recognition. 2002, 2(11):44-47. DOI: 10.1109/ICPR.2002.1048232. [10] DELAKIS M, GARCIA C. Text detection with convolutional neural networks[C] // Proceedings of the Third International Conference on Computer Vision Theory and Applications, 2008:290-294. [11] ZHANG C, LI P, SUN G, et al. Optimizing FPGA-based accelerator design for deep convolutional neural networks[C] //ACM, Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2015:161-170. DIO: 10.1145/2684746.2689060. [12] PEEMEN M, SETIO A A A, MESMAN B, et al. Memory-centric accelerator design for convolutional neural networks[C] //Proceedings of the 2013 IEEE 31th International Conference on Computer Design, 2013:13-19. DOI: 10.1109/ICCD.2013.6657019. [13] LI N, TAKAKI S, TOMIOKAY Y, et al. A multistage dataflow implementation of a deep convolutional neural network based on FPGA for high-speed object recognition[C] //IEEE, 2016 IEEE Southwest Symposium on Image Analysis and Interpretation, 2016:165-168. DOI: 10.1109/SSIAI.2016.7459201. [14] BACIS M, NATALE G, SOZZO E D, et al. A pipelined and scalable dataflow implementation of convolutional neural networks on FPGA[C] //IEEE, Parallel and Distributed Processing Symposium Workshops, 2017:90-97. DOI:10.1109/IPDPSW.2017.44. [15] NATALE G, BACIS M, SANTAMBROGIO M D. On how to design dataflow FPGA-based accelerators for convolutional neural networks[C] //IEEE, 2017 IEEE Computer Society Annual Symposium on VLSI, 2017:639-644. DOI: 10.1109/ISVLSI.2017.126. |