[1] OSADA G, OMOTE K, NISHIDE T. Network intrusion detection based on semi-supervised variational auto-encoder[C] //Proceedings of the 2017 European Symposium on Research in Computer Security. Berlin: Springer, 2017: 344-361. [2] 温博文,董文瀚,解武杰,等.基于改进网格搜索算法的随机森林参数优化[J].计算机工程与应用, 2018, 54(10): 154-157. [3] AMBIKAVATHI C, S. K. S. Tuning random forest parameters using simulated annealing for intrusion detection[J]. International Journal of Innovative Technology and Exploring Engineering(IJITEE), 2020, 9(9): 353-358. [4] 柯钢.改进粒子群算法优化支持向量机的入侵检测方法[J].合肥工业大学学报(自然科学版), 2019, 42(10): 1341-1345. [5] ZHANG H P, HUANG L L, WU C Q, et al.An effective convolutional neural network based on SMOTE and gaussian mixture model for intrusion detection in imbalanced dataset[J].Computer Networks, 2020, 177: 107315. [6] JIANG K Y, WANG W Y, WANG A L, et al.Network intrusion detection combined hybrid sampling with deep hierarchical network[J].IEEE Access, 2020, 8: 32464-32476. [7] PHYO T T K, HTWE P P W, KHIN N N T.New intrusion detection framework using cost sensitive classifier and features[J].International Journal of Wireless and Microwave Technologies(IJWMT), 2022, 1: 22-29. [8] MULYANTO M, FAISAL M, PRAKOSA S W, et al.Effectiveness of focal loss for minority classification in network intrusion detection systems[J].Symmetry, 2020, 13(1): 4.DOI:10.3390/sym13020004. [9] 曹扬晨,朱国胜,祁小云,等.基于随机森林的入侵检测分类研究[J].计算机科学,2021, 48(S1): 459-463. [10] CHEN C, LIAW A, BREIMAN L. Using random forest to learn imbalanced data[J]. University of California, Berkeley, 2004, 110(24): 1-12. [11] XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems ence & Control Engineering An Open Access Journal, 2020, 8(1): 22-34. [12] TAVALLAEE M, BAGHERI E, LU W, et al. A detailed analysis of the KDD CUP 99 data set[C] //2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, IEEE, 2009: 1-6. DOI:10.1109/CISDA.2009.5356528. [13] MOUSTAFA N, SLAY J. UNSW-NB15: a comprehensive data set for network intrusion detection systems(UNSW-NB15 network data set)[C] //2015 Military Communications and Information Systems Conference(MilCIS), IEEE, 2015: 1-6. DOI:10.1109/MilCIS2015.7348942. [14] SHARAFALDIN I, LASHKARI A H, GHORBANI A A. Toward generating a new intrusion detection dataset and intrusion traffic characterization[C] //4th International Conference on Information Systems Security and Privacy, Portugal: ICISSP Press, 2018: 108-116. DOI:10.5220/0006639801080116. [15] 杨圣哲.面向不平衡数据的网络入侵检测方法研究[D].北京:北京交通大学, 2021. [16] 孙一恒.基于改进深度森林的入侵检测方法研究[D].武汉:湖北工业大学, 2020. [17] 陈成.小样本纠错的混合入侵检测分类器研究[D].广州:广东工业大学, 2020. [18] 冯杰.基于卷积神经网络的网络入侵检测算法研究[D].太原:山西大学, 2020. [19] 卢琼.基于深度学习的网络攻击检测技术的研究[D].北京:华北电力大学, 2020. ( |